scispace - formally typeset
Search or ask a question
Topic

Special relativity (alternative formulations)

About: Special relativity (alternative formulations) is a research topic. Over the lifetime, 3102 publications have been published within this topic receiving 55015 citations.


Papers
More filters
Book
01 Jan 1968

11 citations

Posted Content
TL;DR: In this article, the authors demonstrate this Whiggish approach on the example of Woldemar Voigt's 1887 paper, and use the related historical circumstances to give a broader view on special relativity, than it is usually anticipated.
Abstract: The teaching of modern physics often uses the history of physics as a didactic tool. However, as in this process the history of physics is not something studied but used, there is a danger that the history itself will be distorted in, as Butterfield calls it, a “Whiggish” way, when the present becomes the measure of the past. It is not surprising that reading today a paper written more than a hundred years ago, we can extract much more of it than was actually thought or dreamed by the author himself. We demonstrate this Whiggish approach on the example of Woldemar Voigt’s 1887 paper. From the modern perspective, it may appear that this paper opens a way to both the special relativity and to its anisotropic Finslerian generalization which came into the focus only recently, in relation with the Cohen and Glashow’s very special relativity proposal. With a little imagination, one can connect Voigt’s paper to the notorious Einstein-Poincare priority dispute, which we believe is a Whiggish late time artifact. We use the related historical circumstances to give a broader view on special relativity, than it is usually anticipated.

11 citations

Journal ArticleDOI
TL;DR: In this article, a new methodological approach to the study of relativistic space-time properties is proposed based on the 20th century's vast experimental research on relativists accelerator and cosmic ray particles.
Abstract: A new methodological approach to the study of relativistic space-time properties is proposed based on the 20th century's vast experimental research on relativistic accelerator and cosmic ray particles. This approach vividly demonstrates that relativistic effects are the manifestation of fundamental space-time properties and refutes the false notion that relativity is only of relevance to light phenomena.

11 citations

Journal ArticleDOI
TL;DR: In this article, interior solutions of the field equations for anisotropic sphere in the bimetric general relativity theory formulated by Rosen are obtained, which agree with the Einstein's general relativity for a physical system compared to the size of the universe such as the solar system.
Abstract: In this paper we have obtained interior solutions of the field equations for anisotropic sphere in the bimetric general relativity theory formulated by Rosen (Lett. Nuovo Cimento 25, 1979). A class of solutions for a uniform energy-density source of the field equations is presented. The analytic solutions obtained are physically reasonable, well behaved in the interior of the sphere. The solutions agree with the Einstein’s general relativity for a physical system compared to the size of the universe such as the solar system.

11 citations

Journal ArticleDOI
30 Jul 2020-Symmetry
TL;DR: This review article review studies that led to the discovery that the Lorentz group SO(m, n) forms the symmetry group by which a multi-particle system of m entangled n-dimensional particles can be understood in an extended sense of relativistic settings.
Abstract: A Lorentz transformation group SO(m, n) of signature (m, n), m, n ∈ N, in m time and n space dimensions, is the group of pseudo-rotations of a pseudo-Euclidean space of signature (m, n). Accordingly, the Lorentz group SO(1, 3) is the common Lorentz transformation group from which special relativity theory stems. It is widely acknowledged that special relativity and quantum theories are at odds. In particular, it is known that entangled particles involve Lorentz symmetry violation. We, therefore, review studies that led to the discovery that the Lorentz group SO(m, n) forms the symmetry group by which a multi-particle system of m entangled n-dimensional particles can be understood in an extended sense of relativistic settings. Consequently, we enrich special relativity by incorporating the Lorentz transformation groups of signature (m, 3) for all m ≥ 2. The resulting enriched special relativity provides the common symmetry group SO(1, 3) of the (1 + 3)-dimensional spacetime of individual particles, along with the symmetry group SO(m, 3) of the (m + 3)-dimensional spacetime of multi-particle systems of m entangled 3-dimensional particles, for all m ≥ 2. A unified parametrization of the Lorentz groups SO(m, n) for all m, n ∈ N, shakes down the underlying matrix algebra into elegant and transparent results. The special case when (m, n) = (1, 3) is supported experimentally by special relativity. It is hoped that this review article will stimulate the search for experimental support when (m, n) = (m, 3) for all m ≥ 2.

11 citations


Network Information
Related Topics (5)
General relativity
29K papers, 810.8K citations
85% related
Gravitation
29.3K papers, 821.5K citations
85% related
Quantum gravity
20.3K papers, 681.9K citations
83% related
Field (physics)
95K papers, 1.5M citations
82% related
Dark energy
20K papers, 750.8K citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202152
202073
201970
201870
201790
201693