scispace - formally typeset
Search or ask a question
Topic

Special relativity (alternative formulations)

About: Special relativity (alternative formulations) is a research topic. Over the lifetime, 3102 publications have been published within this topic receiving 55015 citations.


Papers
More filters
Book ChapterDOI
01 Jan 2006
TL;DR: The present paper gives samples from an ongoing broader research project which in turn is part of a research direction going back to Reichenbach and others in the 1920’s and tries to give some perspective on the literature related in a broader sense.
Abstract: We study relativity theory as a theory in the sense of mathematical logic. We use first-order logic (FOL) as a framework to do so. We aim at an “analysis of the logical structure of relativity theories”. First we build up (the kinematics of) special relativity in FOL, then analyze it, and then we experiment with generalizations in the direction of general relativity. The present paper gives samples from an ongoing broader research project which in turn is part of a research direction going back to Reichenbach and others in the 1920’s. We also try to give some perspective on the literature related in a broader sense. In the perspective of the present work, axiomatization is not a final goal. Axiomatization is only a first step, a tool. The goal is something like a conceptual analysis of relativity in the framework of logic.

38 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that anomalous Cherenkov-like processes are forbidden if Lorentz symmetry is instead "deformed", preserving the relativity of inertial frames.
Abstract: In a recent study, Cohen and Glashow argue that superluminal neutrinos of the type recently reported by OPERA should be affected by anomalous Cherenkov-like processes. This causes them to loose much of their energy before reaching the OPERA detectors. Related concerns were reported also by Gonzalez-Mestres and Bi et. al., who argued that pions cannot decay to superluminal neutrinos over part of the energy range studied by OPERA. We observe here that these arguments are set within a framework in which Lorentz symmetry is broken, by the presence of a preferred frame. We further show that these anomalous processes are forbidden if Lorentz symmetry is instead "deformed", preserving the relativity of inertial frames. These deformations add non-linear terms to energy momentum relations, conservation laws and Lorentz transformations in a way that is consistent with the relativity of inertial observers.

38 citations

Dissertation
01 Jan 2009
TL;DR: In this article, a first-order logic axiomatization of special relativity is proposed to make predictions about the gravitational effect slowing down time, which is a continuation of the work of Andreka, Madarasz and Nemeti.
Abstract: Applying mathematical logic in foundations of relativity theories is not a new idea at all, it goes back to such leading mathematicians and philosophers as Hilbert, Reichenbach, Carnap, Godel, Tarski, Suppes and Friedman among others. The work of our school of Logic and Relativity led by Andreka and Nemeti is continuation to their research. This thesis is mainly about extensions of the first-order logic axiomatization of special relativity introduced by Andreka, Madarasz and Nemeti. These extensions include extension to accelerated observers, relativistic dynamics and general relativity; however, its main subject is the extension to accelerated observers (AccRel). One surprising result is that natural extension to accelerated observers is not enough if we want our theory to imply certain experimental facts, such as the twin paradox. Even if we add the whole first-order theory of real numbers to this natural extension, it is still not enough to imply the twin paradox. Nevertheless, that does not mean that this task cannot be carried out within first-order logic since by approximating a second-order logic axiom of real numbers, we introduce a first-order axiom schema that solves the problem. Our theory AccRel nicely fills the gap between special and general relativity theories, and only one natural generalization step is needed to achieve a first-order logic axiomatization of general relativity from it. We also show that AccRel is strong enough to make predictions about the gravitational effect slowing down time. Our general aims are to axiomatize relativity theories within pure first-order logic using simple, comprehensible and transparent basic assumptions (axioms); to prove the surprising predictions (theorems) of relativity theories from a few convincing axioms; to eliminate tacit assumptions from relativity by replacing them with explicit axioms formulated in first-order logic (in the spirit of the first-order logic foundation of mathematics and Tarski's axiomatization of geometry); and to investigate the relationship between the axioms and the theorems.

37 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that changes of topology in the spacetime of classical general relativity are consistent with stable causality, future causal geodesic completeness, and finite, positive energy density.
Abstract: It is shown that ‘changes of topology’ (of spacelike sections) in the spacetime of classical general relativity are consistent with the following requirements: (i) stable causality, (ii) future causal geodesic completeness, and (iii) finite, positive energy density This amounts to showing that the framework of classical general relativity encompasses ‘changes of topology’

37 citations


Network Information
Related Topics (5)
General relativity
29K papers, 810.8K citations
85% related
Gravitation
29.3K papers, 821.5K citations
85% related
Quantum gravity
20.3K papers, 681.9K citations
83% related
Field (physics)
95K papers, 1.5M citations
82% related
Dark energy
20K papers, 750.8K citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202152
202073
201970
201870
201790
201693