scispace - formally typeset
Search or ask a question
Topic

Special relativity (alternative formulations)

About: Special relativity (alternative formulations) is a research topic. Over the lifetime, 3102 publications have been published within this topic receiving 55015 citations.


Papers
More filters
Posted Content
TL;DR: In this article, the Minkowskian space-time emerges from a topologically homogeneous causal network, presenting a simple analytical derivation of the Lorentz transformations, with metric as pure event-counting.
Abstract: We show how the Minkowskian space-time emerges from a topologically homogeneous causal network, presenting a simple analytical derivation of the Lorentz transformations, with metric as pure event-counting. The derivation holds generally for d=1 space dimension, however, it can be extended to d>1 for special causal networks.

27 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that depending on the direction of deformation of κ -Poincare algebra (time-like, space-like or light-like), the associated phase spaces of a single particle in Doubly Special Relativity theories have the energy-momentum spaces of the form of de Sitter, anti-de Sitter and flat space, respectively.

26 citations

Journal ArticleDOI
TL;DR: The Egyptian engineer and theoretical physicist Mohamed El Naschie has found a definite resolution to the missing dark energy of the cosmos based on a revision of the theory of Relativity as mentioned in this paper.
Abstract: The Egyptian engineering scientist and theoretical physicist Mohamed El Naschie has found a definite resolution to the missing dark energy of the cosmos based on a revision of the theory of Relativity. Einstein’s equation of special relativity E = m0c2, where m0 is the controversial rest mass and c is the velocity of light developed in smooth 4D space-time was transferred by El Naschie to a rugged Calabi-Yau and K3 fuzzy Kahler manifold. The result is an accurate, effective quantum gravity energy-mass relation which correctly predicts that 95.4915028% of the energy in the cosmos is the missing hypothetical dark energy. The agreement with WMAP and supernova measurements is astounding. Different theories are used by El Naschie to check the calculations and all lead to the same quantitative result. Thus the theories of varying speed of light, scale relativity, E-infinity theory, M-theory, Heterotic super strings, quantum field in curved space-time, Veneziano’s dual resonance model and Nash’s Euclidean embedding all reinforce, without any reservation, the above mentioned theoretical result of El Naschie which in turn is in total agreement with the most sophisticated cosmological measurement. Incidentally these experimental measurements and analysis were awarded the 2011 Nobel Prize in Physics to Adam Riess, Brian Schmidt, and Saul Perlmutter.

26 citations


Network Information
Related Topics (5)
General relativity
29K papers, 810.8K citations
85% related
Gravitation
29.3K papers, 821.5K citations
85% related
Quantum gravity
20.3K papers, 681.9K citations
83% related
Field (physics)
95K papers, 1.5M citations
82% related
Dark energy
20K papers, 750.8K citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202152
202073
201970
201870
201790
201693