scispace - formally typeset
Search or ask a question

Showing papers on "Species richness published in 2015"


Journal ArticleDOI
02 Apr 2015-Nature
TL;DR: A terrestrial assemblage database of unprecedented geographic and taxonomic coverage is analysed to quantify local biodiversity responses to land use and related changes and shows that in the worst-affected habitats, pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%.
Abstract: Human activities, especially conversion and degradation of habitats, are causing global biodiversity declines. How local ecological assemblages are responding is less clear--a concern given their importance for many ecosystem functions and services. We analysed a terrestrial assemblage database of unprecedented geographic and taxonomic coverage to quantify local biodiversity responses to land use and related changes. Here we show that in the worst-affected habitats, these pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%. We estimate that, globally, these pressures have already slightly reduced average within-sample richness (by 13.6%), total abundance (10.7%) and rarefaction-based richness (8.1%), with changes showing marked spatial variation. Rapid further losses are predicted under a business-as-usual land-use scenario; within-sample richness is projected to fall by a further 3.4% globally by 2100, with losses concentrated in biodiverse but economically poor countries. Strong mitigation can deliver much more positive biodiversity changes (up to a 1.9% average increase) that are less strongly related to countries' socioeconomic status.

2,532 citations


Journal ArticleDOI
01 Jan 2015
TL;DR: An updated inventory of Brazilian seed plants is presented and offers important insights into the country's biodiversity as mentioned in this paper, with the publication of the Plants and Fungi Catalogue, and has been updated since by more than 430 specialists working online.
Abstract: An updated inventory of Brazilian seed plants is presented and offers important insights into the country's biodiversity. This work started in 2010, with the publication of the Plants and Fungi Catalogue, and has been updated since by more than 430 specialists working online. Brazil is home to 32,086 native Angiosperms and 23 native Gymnosperms, showing an increase of 3% in its species richness in relation to 2010. The Amazon Rainforest is the richest Brazilian biome for Gymnosperms, while the Atlantic Rainforest is the richest one for Angiosperms. There was a considerable increment in the number of species and endemism rates for biomes, except for the Amazon that showed a decrease of 2.5% of recorded endemics. However, well over half of Brazillian seed plant species (57.4%) is endemic to this territory. The proportion of life-forms varies among different biomes: trees are more expressive in the Amazon and Atlantic Rainforest biomes while herbs predominate in the Pampa, and lianas are more expressive in the Amazon, Atlantic Rainforest, and Pantanal. This compilation serves not only to quantify Brazilian biodiversity, but also to highlight areas where there information is lacking and to provide a framework for the challenge faced in conserving Brazil's unique and diverse flora.

1,123 citations


Journal ArticleDOI
03 Sep 2015-Nature
TL;DR: The results quantify for the first time the extent of plant naturalizations worldwide, and illustrate the urgent need for globally integrated efforts to control, manage and understand the spread of alien species.
Abstract: All around the globe, humans have greatly altered the abiotic and biotic environment with ever-increasing speed. One defining feature of the Anthropocene epoch is the erosion of biogeographical barriers by human-mediated dispersal of species into new regions, where they can naturalize and cause ecological, economic and social damage. So far, no comprehensive analysis of the global accumulation and exchange of alien plant species between continents has been performed, primarily because of a lack of data. Here we bridge this knowledge gap by using a unique global database on the occurrences of naturalized alien plant species in 481 mainland and 362 island regions. In total, 13,168 plant species, corresponding to 3.9% of the extant global vascular flora, or approximately the size of the native European flora, have become naturalized somewhere on the globe as a result of human activity. North America has accumulated the largest number of naturalized species, whereas the Pacific Islands show the fastest increase in species numbers with respect to their land area. Continents in the Northern Hemisphere have been the major donors of naturalized alien species to all other continents. Our results quantify for the first time the extent of plant naturalizations worldwide, and illustrate the urgent need for globally integrated efforts to control, manage and understand the spread of alien species.

704 citations


Journal ArticleDOI
TL;DR: Intensive agriculture reduces soil biodiversity, making soil food webs less diverse and composed of smaller bodied organisms, and how changes in soil biodiversity due to land-use intensification may threaten the functioning of soil in agricultural production systems is discussed.
Abstract: Soil biodiversity plays a key role in regulating the processes that underpin the delivery of ecosystem goods and services in terrestrial ecosystems. Agricultural intensification is known to change the diversity of individual groups of soil biota, but less is known about how intensification affects biodiversity of the soil food web as a whole, and whether or not these effects may be generalized across regions. We examined biodiversity in soil food webs from grasslands, extensive, and intensive rotations in four agricultural regions across Europe: in Sweden, the UK, the Czech Republic and Greece. Effects of land-use intensity were quantified based on structure and diversity among functional groups in the soil food web, as well as on community-weighted mean body mass of soil fauna. We also elucidate land-use intensity effects on diversity of taxonomic units within taxonomic groups of soil fauna. We found that between regions soil food web diversity measures were variable, but that increasing land-use intensity caused highly consistent responses. In particular, land-use intensification reduced the complexity in the soil food webs, as well as the community-weighted mean body mass of soil fauna. In all regions across Europe, species richness of earthworms, Collembolans, and oribatid mites was negatively affected by increased land-use intensity. The taxonomic distinctness, which is a measure of taxonomic relatedness of species in a community that is independent of species richness, was also reduced by land-use intensification. We conclude that intensive agriculture reduces soil biodiversity, making soil food webs less diverse and composed of smaller bodied organisms. Land-use intensification results in fewer functional groups of soil biota with fewer and taxonomically more closely related species. We discuss how these changes in soil biodiversity due to land-use intensification may threaten the functioning of soil in agricultural production systems.

622 citations


Journal ArticleDOI
TL;DR: This study provides new insights into the general mechanisms that link biodiversity to ecosystem functioning in natural animal communities and suggests that the observed responses were due to the identity and dominance patterns of the trait composition rather than the number or abundance of species per se.
Abstract: Drastic biodiversity declines have raised concerns about the deterioration of ecosystem functions and have motivated much recent research on the relationship between species diversity and ecosystem functioning. A functional trait framework has been proposed to improve the mechanistic understanding of this relationship, but this has rarely been tested for organisms other than plants. We analysed eight datasets, including five animal groups, to examine how well a trait-based approach, compared with a more traditional taxonomic approach, predicts seven ecosystem functions below- and above-ground. Trait-based indices consistently provided greater explanatory power than species richness or abundance. The frequency distributions of single or multiple traits in the community were the best predictors of ecosystem functioning. This implies that the ecosystem functions we investigated were underpinned by the combination of trait identities (i.e. single-trait indices) and trait complementarity (i.e. multi-trait indices) in the communities. Our study provides new insights into the general mechanisms that link biodiversity to ecosystem functioning in natural animal communities and suggests that the observed responses were due to the identity and dominance patterns of the trait composition rather than the number or abundance of species per se.

501 citations


Journal ArticleDOI
TL;DR: This work uses a novel analytical approach, the Price equation, to partition the contribution to ecosystem services made by species richness, composition and abundance in four large-scale data sets on crop pollination by native bees, and finds that abundance fluctuations of dominant species drove ecosystem service delivery.
Abstract: Biodiversity-ecosystem functioning experiments have established that species richness and composition are both important determinants of ecosystem function in an experimental context. Determining whether this result holds for real-world ecosystem services has remained elusive, however, largely due to the lack of analytical methods appropriate for large-scale, associational data. Here, we use a novel analytical approach, the Price equation, to partition the contribution to ecosystem services made by species richness, composition and abundance in four large-scale data sets on crop pollination by native bees. We found that abundance fluctuations of dominant species drove ecosystem service delivery, whereas richness changes were relatively unimportant because they primarily involved rare species that contributed little to function. Thus, the mechanism behind our results was the skewed species-abundance distribution. Our finding that a few common species, not species richness, drive ecosystem service delivery could have broad generality given the ubiquity of skewed species-abundance distributions in nature.

464 citations


Journal ArticleDOI
TL;DR: A global dataset is used to investigate host range for over 7,500 insect herbivore species covering a wide taxonomic breadth and interacting with more than 2,000 species of plants in 165 families to ask whether relatively specialized and generalized herbivores represent a dichotomy rather than a continuum from few to many host families and species attacked and whether diet breadth changes with increasing plant species richness toward the tropics.
Abstract: Understanding variation in resource specialization is important for progress on issues that include coevolution, community assembly, ecosystem processes, and the latitudinal gradient of species richness. Herbivorous insects are useful models for studying resource specialization, and the interaction between plants and herbivorous insects is one of the most common and consequential ecological associations on the planet. However, uncertainty persists regarding fundamental features of herbivore diet breadth, including its relationship to latitude and plant species richness. Here, we use a global dataset to investigate host range for over 7,500 insect herbivore species covering a wide taxonomic breadth and interacting with more than 2,000 species of plants in 165 families. We ask whether relatively specialized and generalized herbivores represent a dichotomy rather than a continuum from few to many host families and species attacked and whether diet breadth changes with increasing plant species richness toward the tropics. Across geographic regions and taxonomic subsets of the data, we find that the distribution of diet breadth is fit well by a discrete, truncated Pareto power law characterized by the predominance of specialized herbivores and a long, thin tail of more generalized species. Both the taxonomic and phylogenetic distributions of diet breadth shift globally with latitude, consistent with a higher frequency of specialized insects in tropical regions. We also find that more diverse lineages of plants support assemblages of relatively more specialized herbivores and that the global distribution of plant diversity contributes to but does not fully explain the latitudinal gradient in insect herbivore specialization.

457 citations


Book
01 Jan 2015
TL;DR: Applied Hierarchical Modeling in Ecology: Distribution, Abundance, Species Richness offers a new synthesis of the state-of-the-art of hierarchical models for plant and animal distribution, abundance, and community characteristics such as species richness using data collected in metapopulation designs.
Abstract: Applied Hierarchical Modeling in Ecology: Distribution, Abundance, Species Richness offers a new synthesis of the state-of-the-art of hierarchical models for plant and animal distribution, abundance, and community characteristics such as species richness using data collected in metapopulation designs. These types of data are extremely widespread in ecology and its applications in such areas as biodiversity monitoring and fisheries and wildlife management. This first volume explains static models/procedures in the context of hierarchical models that collectively represent a unified approach to ecological research, taking the reader from design, through data collection, and into analyses using a very powerful class of models. Applied Hierarchical Modeling in Ecology, Volume 1 serves as an indispensable manual for practicing field biologists, and as a graduate-level text for students in ecology, conservation biology, fisheries/wildlife management, and related fields. * Provides a synthesis of important classes of models about distribution, abundance, and species richness while accommodating imperfect detection* Presents models and methods for identifying unmarked individuals and species* Written in a step-by-step approach accessible to non-statisticians and provides fully worked examples that serve as a template for readers' analyses* Includes companion website containing data sets, code, solutions to exercises, and further information

428 citations


Journal ArticleDOI
TL;DR: While urban pollinator assemblages were more homogeneous across space than those in farmland or nature reserves, there was no significant difference in the numbers of rarer species between the three landscapes.
Abstract: Insect pollinators provide a crucial ecosystem service, but are under threat. Urban areas could be important for pollinators, though their value relative to other habitats is poorly known. We compared pollinator communities using quantified flower-visitation networks in 36 sites (each 1 km2) in three landscapes: urban, farmland and nature reserves. Overall, flower-visitor abundance and species richness did not differ significantly between the three landscape types. Bee abundance did not differ between landscapes, but bee species richness was higher in urban areas than farmland. Hoverfly abundance was higher in farmland and nature reserves than urban sites, but species richness did not differ significantly. While urban pollinator assemblages were more homogeneous across space than those in farmland or nature reserves, there was no significant difference in the numbers of rarer species between the three landscapes. Network-level specialization was higher in farmland than urban sites. Relative to other habitats, urban visitors foraged from a greater number of plant species (higher generality) but also visited a lower proportion of available plant species (higher specialization), both possibly driven by higher urban plant richness. Urban areas are growing, and improving their value for pollinators should be part of any national strategy to conserve and restore pollinators.

413 citations


Journal ArticleDOI
TL;DR: In this article, the authors used a structural equation model to test the hypothesis that species richness, forest structural attributes and environmental drivers have independent, positive effects on aboveground biomass (AGB) and ecosystem functioning.
Abstract: Aim Tropical forests store 25% of global carbon and harbour 96% of the world's tree species, but it is not clear whether this high biodiversity matters for carbon storage. Few studies have teased apart the relative importance of forest attributes and environmental drivers for ecosystem functioning, and no such study exists for the tropics. Location Neotropics. Methods We relate aboveground biomass (AGB) to forest attributes (diversity and structure) and environmental drivers (annual rainfall and soil fertility) using data from 144,000 trees, 2050 forest plots and 59 forest sites. The sites span the complete latitudinal and climatic gradients in the lowland Neotropics, with rainfall ranging from 750 to 4350 mm year−1. Relationships were analysed within forest sites at scales of 0.1 and 1 ha and across forest sites along large-scale environmental gradients. We used a structural equation model to test the hypothesis that species richness, forest structural attributes and environmental drivers have independent, positive effects on AGB. Results Across sites, AGB was most strongly driven by rainfall, followed by average tree stem diameter and rarefied species richness, which all had positive effects on AGB. Our indicator of soil fertility (cation exchange capacity) had a negligible effect on AGB, perhaps because we used a global soil database. Taxonomic forest attributes (i.e. species richness, rarefied richness and Shannon diversity) had the strongest relationships with AGB at small spatial scales, where an additional species can still make a difference in terms of niche complementarity, while structural forest attributes (i.e. tree density and tree size) had strong relationships with AGB at all spatial scales. Main conclusions Biodiversity has an independent, positive effect on AGB and ecosystem functioning, not only in relatively simple temperate systems but also in structurally complex hyperdiverse tropical forests. Biodiversity conservation should therefore be a key component of the UN Reducing Emissions from Deforestation and Degradation strategy.

342 citations


Journal ArticleDOI
TL;DR: It is shown that most tree species are extremely rare, meaning that they may be under serious risk of extinction at current deforestation rates, and a methodological framework for estimating species richness in trees is provided that may help refine species richness estimates of tree-dependent taxa.
Abstract: The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between similar to 40,000 and similar to 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of similar to 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of similar to 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.

Journal ArticleDOI
17 Jul 2015-Science
TL;DR: In this paper, by using data from coordinated surveys conducted throughout grasslands worldwide and comprising a wide range of site productivities, the authors provide evidence in support of the humped-back model (HBM) pattern at both global and regional extents.
Abstract: The search for predictions of species diversity across environmental gradients has challenged ecologists for decades The humped-back model (HBM) suggests that plant diversity peaks at intermediate productivity; at low productivity few species can tolerate the environmental stresses, and at high productivity a few highly competitive species dominate Over time the HBM has become increasingly controversial, and recent studies claim to have refuted it Here, by using data from coordinated surveys conducted throughout grasslands worldwide and comprising a wide range of site productivities, we provide evidence in support of the HBM pattern at both global and regional extents The relationships described here provide a foundation for further research into the local, landscape, and historical factors that maintain biodiversity

Book ChapterDOI
TL;DR: Trait Driver Theory provides a baseline for recasting the predictions of ecological theories based on species richness in terms of the shape of trait distributions and integrating how specific traits then ‘scale up’ to influence ecosystem functioning and the dynamics of species assemblages across climate gradients.
Abstract: Aim: More powerful tests of biodiversity theories need to move beyond species richness and explicitly focus on mechanisms generating diversity via trait composition The rise of trait-based ecology has led to an increased focus on the distribution and dynamics of traits across broad geographic and climatic gradients and how these distributions influence ecosystem function However, a general theory of trait-based ecology, that can apply across different scales (eg species that differ in size) and gradients (eg temperature), has yet to be formulated While research focused on metabolic and allometric scaling theory provides the basis for such a theory, it does not explicitly account for differences in traits within and across taxa, such as variation in the optimal temperature for growth Here we synthesize trait-based and metabolic scaling approaches into a framework that we term ‘Trait Driver Theory’ or TDT It shows that the shape and dynamics of trait and size distributions can be linked to fundamental drivers of community assembly and how the community will respond to future drivers To assess predictions and assumptions of TDT, we review several theoretical studies and recent empirical studies spanning local and biogeographic gradients Further, we analyze how the shift in trait distributions influences ecosystem processes across an elevational gradient and a 140-year-long ecological experiment We show that TDT provides a baseline for (i) recasting the predictions of ecological theories based on species richness in terms of the shape of trait distributions and (ii) integrating how specific traits, including body size, and functional diversity then ‘scale up’ to influence ecosystem functioning and the dynamics of species assemblages across climate gradients Further, TDT offers a novel framework to integrate trait, metabolic/allometric, and species-richness-based approaches to better predict functional biogeography and how assemblages of species have and may respond to climate change

Journal ArticleDOI
TL;DR: Four new and independent estimates of beetle species richness are presented, which produce a mean estimate of 1.5 million beetle species, and it is argued that the surprisingly narrow range of these four autonomous estimates represents a major advance in honing in on the richness of this most significant taxon.
Abstract: It has been suggested that we do not know within an order of magnitude the number of all species on Earth [May RM (1988) Science 241(4872):1441–1449]. Roughly 1.5 million valid species of all organisms have been named and described [Costello MJ, Wilson S, Houlding B (2012) Syst Biol 61(5):871–883]. Given Kingdom Animalia numerically dominates this list and virtually all terrestrial vertebrates have been described, the question of how many terrestrial species exist is all but reduced to one of how many arthropod species there are. With beetles alone accounting for about 40% of all described arthropod species, the truly pertinent question is how many beetle species exist. Here we present four new and independent estimates of beetle species richness, which produce a mean estimate of 1.5 million beetle species. We argue that the surprisingly narrow range (0.9–2.1 million) of these four autonomous estimates—derived from host-specificity relationships, ratios with other taxa, plant:beetle ratios, and a completely novel body-size approach—represents a major advance in honing in on the richness of this most significant taxon, and is thus of considerable importance to the debate on how many species exist. Using analogous approaches, we also produce independent estimates for all insects, mean: 5.5 million species (range 2.6–7.8 million), and for terrestrial arthropods, mean: 6.8 million species (range 5.9–7.8 million), which suggest that estimates for the world’s insects and their relatives are narrowing considerably.

Journal ArticleDOI
TL;DR: It was found that canopy packing efficiency increased markedly in response to species richness across a range of forest types and species combinations, and positive canopy packing–diversity relationships were primarily driven by the fact that trees growing in mixture had sizably larger crowns.
Abstract: Summary 1. It has been suggested that diverse forests utilize canopy space more efficiently than speciespoor ones, as mixing species with complementary architectural and physiological traits allows trees to pack more densely. However, whether positive canopy packing–diversity relationships are a general feature of forests remains unclear. 2. Using crown allometric data collected for 12 939 trees from permanent forest plots across Europe, we test (i) whether diversity promotes canopy packing across forest types and (ii) whether increased canopy packing occurs primarily through vertical stratification of tree crowns or as a result of intraspecific plasticity in crown morphology. 3. We found that canopy packing efficiency increased markedly in response to species richness across a range of forest types and species combinations. Positive canopy packing–diversity relationships were primarily driven by the fact that trees growing in mixture had sizably larger crowns (38% on average) than those in monoculture. 4. The ability of trees to plastically adapt the shape and size of their crowns in response to changes in local competitive environment is critical in allowing mixed-species forests to optimize the use of canopy space. By promoting the development of denser and more structurally complex canopies, species mixing can strongly impact nutrient cycling and storage in forest ecosystems.

Journal ArticleDOI
TL;DR: The patterns and mechanisms associated with invasion resistance are examined and a mechanistic synthesis governed by the species richness, species evenness, and resource availability of resident communities is created.

Journal ArticleDOI
TL;DR: Open databases and integrative bioinformatic tools allow a rapid approximation of large‐scale patterns of biodiversity across space and altitudinal ranges, and it is found that geographic inaccuracy affects diversity patterns more than taxonomic uncertainties.
Abstract: Aim Massive digitalization of natural history collections is now leading to a steep accumulation of publicly available species distribution data. However, taxonomic errors and geographical uncertainty of species occurrence records are now acknowledged by the scientific community – putting into question to what extent such data can be used to unveil correct patterns of biodiversity and distribution. We explore this question through quantitative and qualitative analyses of uncleaned versus manually verified datasets of species distribution records across different spatial scales. Location The American tropics. Methods As test case we used the plant tribe Cinchoneae (Rubiaceae). We compiled four datasets of species occurrences: one created manually and verified through classical taxonomic work, and the rest derived from GBIF under different cleaning and filling schemes. We used new bioinformatic tools to code species into grids, ecoregions, and biomes following WWF's classification. We analysed species richness and altitudinal ranges of the species. Results Altitudinal ranges for species and genera were correctly inferred even without manual data cleaning and filling. However, erroneous records affected spatial patterns of species richness. They led to an overestimation of species richness in certain areas outside the centres of diversity in the clade. The location of many of these areas comprised the geographical midpoint of countries and political subdivisions, assigned long after the specimens had been collected. Main conclusion Open databases and integrative bioinformatic tools allow a rapid approximation of large-scale patterns of biodiversity across space and altitudinal ranges. We found that geographic inaccuracy affects diversity patterns more than taxonomic uncertainties, often leading to false positives, i.e. overestimating species richness in relatively species poor regions. Public databases for species distribution are valuable and should be more explored, but under scrutiny and validation by taxonomic experts. We suggest that database managers implement easy ways of community feedback on data quality.

Journal ArticleDOI
TL;DR: The uncertainties revealed here should guide future research toward achieving convergence in global species richness estimates for coral reefs and other ecosystems via adaptive learning protocols whereby such estimates can be tested and improved, and their uncertainties reduced, as new knowledge is acquired.

Journal ArticleDOI
TL;DR: The results of this study support the Agri-Environmental Schemes intended to promote honey bees and beekeeping sustainability through the enhancement of flower availability in agricultural landscapes.
Abstract: In intensive farmland habitats, pollination of wild flowers and crops may be threatened by the widespread decline of pollinators. The honey bee decline, in particular, appears to result from the combination of multiple stresses, including diseases, pathogens, and pesticides. The reduction of semi-natural habitats is also suspected to entail floral resource scarcity for bees. Yet, the seasonal dynamics and composition of the honey bee diet remains poorly documented to date. In this study, we studied the seasonal contribution of mass-flowering crops (rapeseed and sunflower) vs. other floral resources, as well as the influence of nutritional quality and landscape composition on pollen diet composition over five consecutive years. From April to October, the mass of pollen and nectar collected by honey bees followed a bimodal seasonal trend, marked by a two-month period of low food supply between the two oilseed crop mass-flowerings (ending in May for rapeseed and July for sunflower). Bees collected nectar mainly from crops while pollen came from a wide diversity of herbaceous and woody plant species in semi-natural habitats or from weeds in crops. Weed species constituted the bulk of the honey bee diet between the mass flowering crop periods (up to 40%) and are therefore suspected to play a critical role at this time period. The pollen diet composition was related to the nutritional value of the collected pollen and by the local landscape composition. Our study highlights (1) a food supply depletion period of both pollen and nectar resources during late spring, contemporaneously with the demographic peak of honey bee populations, (2) a high botanical richness of pollen diet, mostly proceeding from trees and weeds, and (3) a pollen diet composition influenced by the local landscape composition. Our results therefore support the Agri-Environmental Schemes intended to promote honey bees and beekeeping sustainability through the enhancement of flower availability in agricultural landscapes.

Journal ArticleDOI
TL;DR: It is concluded that unless directly targeted for monitoring, species classified as DD are likely to go extinct without notice and taking into account information on DD species may help alleviate data gaps in biodiversity indicators and conserve poorly known biodiversity.
Abstract: There is little appreciation of the level of extinction risk faced by one-sixth of the over 65,000 species assessed by the International Union for Conservation of Nature. Determining the status of these data-deficient (DD) species is essential to developing an accurate picture of global biodiversity and identifying potentially threatened DD species. To address this knowledge gap, we used predictive models incorporating species' life history, geography, and threat information to predict the conservation status of DD terrestrial mammals. We constructed the models with 7 machine learning (ML) tools trained on species of known status. The resultant models showed very high species classification accuracy (up to 92%) and ability to correctly identify centers of threatened species richness. Applying the best model to DD species, we predicted 313 of 493 DD species (64%) to be at risk of extinction, which increases the estimated proportion of threatened terrestrial mammals from 22% to 27%. Regions predicted to contain large numbers of threatened DD species are already conservation priorities, but species in these areas show considerably higher levels of risk than previously recognized. We conclude that unless directly targeted for monitoring, species classified as DD are likely to go extinct without notice. Taking into account information on DD species may therefore help alleviate data gaps in biodiversity indicators and conserve poorly known biodiversity.

Journal ArticleDOI
TL;DR: It is suggested that a stronger focus on the geography of speciation, the formation of secondary sympatry, and the feedback between local and regional processes is needed to fully understand community assembly and the importance of dynamic species pools.
Abstract: Ecologists often view community assembly as a process involving the dispersal of species from a static regional species pool followed by environmental filtering to establish the local community. This conceptual framework ignores the dynamic nature of species pools and fails to recognize that communities are assembled by processes operating over a vast range of temporal and spatial scales. Species pool richness and composition are influenced by metacommunity dynamics over short timescales and by speciation, extinction, and dispersal over long timescales. We suggest that a stronger focus on the geography of speciation, the formation of secondary sympatry, and the feedback between local and regional processes is needed to fully understand community assembly and the importance of dynamic species pools.

Journal ArticleDOI
TL;DR: A comprehensive dataset detailing the bacterioplankton diversity along the midstream of the Danube River and its tributaries is presented, revealing that bacterial richness and evenness gradually declined downriver in both the free‐living and particle‐associated bacterial communities.
Abstract: The bacterioplankton diversity in large rivers has thus far been under-sampled despite the importance of streams and rivers as components of continental landscapes. Here, we present a comprehensive dataset detailing the bacterioplankton diversity along the midstream of the Danube River and its tributaries. Using 16S rRNA-gene amplicon sequencing, our analysis revealed that bacterial richness and evenness gradually declined downriver in both the free-living and particle-associated bacterial communities. These shifts were also supported by beta diversity analysis, where the effects of tributaries were negligible in regards to the overall variation. In addition, the river was largely dominated by bacteria that are commonly observed in freshwaters. Dominated by the acI lineage, the freshwater SAR11 (LD12) and the Polynucleobacter group, typical freshwater taxa increased in proportion downriver and were accompanied by a decrease in soil and groundwater-affiliated bacteria. Based on views of the meta-community and River Continuum Concept, we interpret the observed taxonomic patterns and accompanying changes in alpha and beta diversity with the intention of laying the foundation for a unified concept for river bacterioplankton diversity.

Journal ArticleDOI
TL;DR: It is concluded that fragmentation poses an extra threat to biodiversity, in addition to the threat posed by loss of habitat area, and modelling and empirical studies demonstrate adverse demographic consequences of fragmentation when there is little habitat across large areas.
Abstract: In a recent article in this journal, Fahrig (2013, Journal of Biogeography, 40, 1649–1663) concludes that variation in species richness among sampling sites can be explained by the amount of habitat in the ‘local landscape’ around the sites, while the spatial configuration of habitat within the landscape makes little difference. This conclusion may be valid for small spatial scales and when the total amount of habitat is large, but modelling and empirical studies demonstrate adverse demographic consequences of fragmentation when there is little habitat across large areas. Fragmentation effects are best tested with studies on individual species rather than on communities, as the latter typically consist of species with dissimilar habitat requirements. The total amount of habitat and the degree of fragmentation tend to be correlated, which poses another challenge for empirical studies. I conclude that fragmentation poses an extra threat to biodiversity, in addition to the threat posed by loss of habitat area.

Journal ArticleDOI
Sophie Fauset1, Michelle O. Johnson1, Manuel Gloor1, Timothy R. Baker1, Abel Monteagudo M2, Roel J. W. Brienen1, Ted R. Feldpausch3, Gabriela Lopez-Gonzalez1, Yadvinder Malhi4, Hans ter Steege5, Nigel C. A. Pitman6, Christopher Baraloto7, Julien Engel8, Pascal Petronelli, Ana Andrade9, José Luís Camargo9, Susan G. Laurance10, William F. Laurance10, Jérôme Chave11, Elodie Allie, Percy Núñez Vargas2, John Terborgh6, Kalle Ruokolainen12, Marcos Silveira13, Gerardo A. Aymard C, Luzmila Arroyo14, Damien Bonal15, Hirma Ramírez-Angulo16, Alejandro Araujo-Murakami14, David A. Neill, Bruno Hérault, Aurélie Dourdain, Armando Torres-Lezama16, Beatriz Schwantes Marimon17, Rafael de Paiva Salomão18, James A. Comiskey19, Maxime Réjou-Méchain11, Marisol Toledo14, Juan Carlos Licona, Alfredo Alarcón, Adriana Prieto20, Agustín Rudas20, Peter J. Van Der Meer21, Timothy J. Killeen22, Ben-Hur Marimon Junior17, Lourens Poorter23, René G. A. Boot23, Basil Stergios, Emilio Vilanova Torre16, Flávia R. C. Costa9, Carolina Levis9, Juliana Schietti9, Priscila Souza9, Nikée Groot1, Eric Arets23, Victor Chama Moscoso2, Wendeson Castro13, Eurídice N. Honorio Coronado, Marielos Peña-Claros23, Clément Stahl15, Jorcely Barroso13, Joey Talbot1, Ima Célia Guimarães Vieira18, Geertje M. F. van der Heijden24, Raquel Thomas25, Vincent A. Vos, Everton Cristo de Almeida26, Esteban Alvarez Dávila, Luiz E. O. C. Aragão27, Terry L. Erwin28, Paulo S. Morandi17, Edmar Almeida de Oliveira17, Marco Bruno Xavier Valadão17, Roderick Zagt29, Peter van der Hout, Patricia Alvarez Loayza6, John Pipoly30, Ophelia Wang31, Miguel Alexiades32, Carlos Cerón33, Isau Huamantupa-Chuquimaco2, Anthony Di Fiore34, Julie Peacock1, Nadir Pallqui Camacho2, Ricardo Keichi Umetsu17, Plínio Barbosa de Camargo35, Robyn J. Burnham36, Rafael Herrera37, Carlos A. Quesada9, Juliana Stropp, Simone Aparecida Vieira38, Marc K. Steininger39, Carlos Reynel Rodriguez40, Zorayda Restrepo, Adriane Esquivel Muelbert1, Simon L. Lewis41, Georgia Pickavance1, Oliver L. Phillips1 
TL;DR: It is found that dominance of forest function is even more concentrated in a few species than is dominance of tree abundance, with only ≈1% of Amazon tree species responsible for 50% of carbon storage and productivity.
Abstract: While Amazonian forests are extraordinarily diverse, the abundance of trees is skewed strongly towards relatively few 'hyperdominant' species. In addition to their diversity, Amazonian trees are a key component of the global carbon cycle, assimilating and storing more carbon than any other ecosystem on Earth. Here we ask, using a unique data set of 530 forest plots, if the functions of storing and producing woody carbon are concentrated in a small number of tree species, whether the most abundant species also dominate carbon cycling, and whether dominant species are characterized by specific functional traits. We find that dominance of forest function is even more concentrated in a few species than is dominance of tree abundance, with only ≈1% of Amazon tree species responsible for 50% of carbon storage and productivity. Although those species that contribute most to biomass and productivity are often abundant, species maximum size is also influential, while the identity and ranking of dominant species varies by function and by region.

Journal ArticleDOI
TL;DR: A comprehensive time-calibrated framework with important divergence time estimates based on whole-chloroplast sequence data for 29 Brassicaceae species concludes that species radiation, paralleled by high levels of neopolyploidized, follows genome size decrease, stabilization, and genetic diploidization.
Abstract: The Brassicaceae include several major crop plants and numerous important model species in comparative evolutionary research such as Arabidopsis, Brassica, Boechera, Thellungiella, and Arabis species. As any evolutionary hypothesis needs to be placed in a temporal context, reliably dated major splits within the evolution of Brassicaceae are essential. We present a comprehensive time-calibrated framework with important divergence time estimates based on whole-chloroplast sequence data for 29 Brassicaceae species. Diversification of the Brassicaceae crown group started at the Eocene-to-Oligocene transition. Subsequent major evolutionary splits are dated to ∼20 million years ago, coinciding with the Oligocene-to-Miocene transition, with increasing drought and aridity and transient glaciation events. The age of the Arabidopsis thaliana crown group is 6 million years ago, at the Miocene and Pliocene border. The overall species richness of the family is well explained by high levels of neopolyploidy (43% in total), but this trend is neither directly associated with an increase in genome size nor is there a general lineage-specific constraint. Our results highlight polyploidization as an important source for generating new evolutionary lineages adapted to changing environments. We conclude that species radiation, paralleled by high levels of neopolyploidization, follows genome size decrease, stabilization, and genetic diploidization.

Journal ArticleDOI
TL;DR: This work uses the Countryside species-area relationship (SAR) to quantify regional species loss due to land occupation and transformation for five taxa and six land use types in 804 terrestrial ecoregions and shows that the regions with highest biodiversity impacts differed markedly when the vulnerability of species was included.
Abstract: Habitat degradation and subsequent biodiversity damage often take place far from the place of consumption because of globalization and the increasing level of international trade. Informing consumers and policy makers about the biodiversity impacts “hidden” in the life cycle of imported products is an important step toward achieving sustainable consumption patterns. Spatially explicit methods are needed in life cycle assessment to accurately quantify biodiversity impacts of products and processes. We use the Countryside species–area relationship (SAR) to quantify regional species loss due to land occupation and transformation for five taxa and six land use types in 804 terrestrial ecoregions. Further, we calculate vulnerability scores for each ecoregion based on the fraction of each species’ geographic range (endemic richness) hosted by the ecoregion and the IUCN assigned threat level of each species. Vulnerability scores are multiplied with SAR-predicted regional species loss to estimate potential global...

Journal ArticleDOI
TL;DR: It is argued that empirical evidence supports a model whereby ecological factors associated with resource availability regulate species richness at continental scales, and that many purported tests of the ecological limits hypothesis are inherently weak and distract from these three core patterns.
Abstract: Explaining variation in species richness among provinces and other large geographic regions remains one of the most challenging problems at the intersection of ecology and evolution. Here we argue that empirical evidence supports a model whereby ecological factors associated with resource availability regulate species richness at continental scales. Any large-scale predictive model for biological diversity must explain three robust patterns in the natural world. First, species richness for evolutionary biotas is highly correlated with resource-associated surrogate variables, including area, temperature, and productivity. Second, species richness across epochal timescales is largely stationary in time. Third, the dynamics of diversity exhibit clear and predictable responses to mass extinctions, key innovations, and other perturbations. Collectively, these patterns are readily explained by a model in which species richness is regulated by diversity-dependent feedback mechanisms. We argue that many p...

Journal ArticleDOI
TL;DR: The effects of wildflower strips on bees are largely driven by the extent to which local flower richness is increased, and this measure could be enhanced by maximizing the number of bee forage species in seed mixtures, and by management regimes that effectively maintain flower richness in the strips through the years.
Abstract: Growing evidence for declines in wild bees calls for the development and implementation of effective mitigation measures. Enhancing floral resources is a widely accepted measure for promoting bees in agricultural landscapes, but effectiveness varies considerably between landscapes and regions. We hypothesize that this variation is mainly driven by a combination of the direct effects of measures on local floral resources and the availability of floral resources in the surrounding landscape. To test this, we established wildflower strips in four European countries, using the same seed mixture of forage plants specifically targeted at bees. We used a before-after control-impact approach to analyse the impacts of wildflower strips on bumblebees, solitary bees and Red List species and examined to what extent effects were affected by local and landscape-wide floral resource availability, land-use intensity and landscape complexity. Wildflower strips generally enhanced local bee abundance and richness, including Red-listed species. Effectiveness of the wildflower strips increased with the local contrast in flower richness created by the strips and furthermore depended on the availability of floral resources in the surrounding landscape, with different patterns for solitary bees and bumblebees. Effects on solitary bees appeared to decrease with increasing amount of late-season alternative floralresources in the landscape, whereas effects on bumblebees increased with increasing early-season landscape-wide floral resource availability.Synthesis and applications. Our study shows that the effects of wildflower strips on bees are largely driven by the extent to which local flower richness is increased. The effectiveness of this measure could therefore be enhanced by maximizing the number of bee forage species in seed mixtures, and by management regimes that effectively maintain flower richness in the strips through the years. In addition, for bumblebees specifically, our study highlights the importance of a continuous supply of food resources throughout the season. Measures that enhance early-season landscape-wide floral resource availability, such as the cultivation of oilseed rape, can benefit bumblebees by providing the essential resources for colony establishment and growth in spring. Further research is required to determine whether, and under what conditions, wildflower strips result in actual population-level effects. Our study shows that the effects of wildflower strips on bees are largely driven by the extent to which local flower richness is increased. The effectiveness of this measure could therefore be enhanced by maximizing the number of bee forage species in seed mixtures, and by management regimes that effectively maintain flower richness in the strips through the years. In addition, for bumblebees specifically, our study highlights the importance of a continuous supply of food resources throughout the season. Measures that enhance early-season landscape-wide floral resource availability, such as the cultivation of oilseed rape, can benefit bumblebees by providing the essential resources for colony establishment and growth in spring. Further research is required to determine whether, and under what conditions, wildflower strips result in actual population-level effects. (Less)

Journal ArticleDOI
01 Mar 2015-Oikos
TL;DR: It is suggested that changes in the number of species will, on average, tend to alter the functioning of marine ecosystems, and the loss of species may have stronger consequences for some processes than others.
Abstract: Marine ecosystems are experiencing rapid and pervasive changes in biodiversity and species composition. Understanding the ecosystem consequences of these changes is critical to effectively managing these systems. Over the last several years, numerous experimental manipulations of species richness have been performed, yet existing quantitative syntheses have focused on a just a subset of processes measured in experiments and, as such, have not summarized the full data available from marine systems. Here, we present the results of a meta-analysis of 110 marine experiments from 42 studies that manipulated the species richness of organisms across a range of taxa and trophic levels and analysed the consequences for various ecosystem processes (categorised as production, consumption or biogeochemical fluxes). Our results show that, generally, mixtures of species tend to enhance levels of ecosystem function relative to the average component species in monoculture, but have no effect or a negative effect on functioning relative to the ‘highest- performing’ species. These results are largely consistent with those from other syntheses, and extend conclusions to ecological functions that are commonly measured in the marine realm (e.g. nutrient release from sediment bioturbation). For experiments that manipulated three or more levels of richness, we attempted to discern the functional form of the biodiversity–ecosystem functioning relationship. We found that, for response variables related to consumption, a power-function best described the relationship, which is also consistent with previous findings. However, we identified a linear relationship between richness and production. Combined, our results suggest that changes in the number of species will, on average, tend to alter the functioning of marine ecosystems. We outline several research frontiers that will allow us to more fully understand how, why, and when diversity may drive the functioning of marine ecosystems. Synthesis The oceans host an incredible number and variety of species. However, human activities are driving rapid changes in the marine environment. It is imperative we understand ecosystem consequences of any associated loss of species. We summarized data from 110 experiments that manipulated species diversity and evaluated resulting changes to a range of ecosystem responses. We show that losing species, on average, decreases productivity, growth, and a myriad of other processes related to how marine organisms capture and utilize resources. Finally, we suggest that the loss of species may have stronger consequences for some processes than others.

Journal ArticleDOI
TL;DR: In this article, the authors apply three commonly used SDMs (AquaMaps, Maxent, and the Dynamic Bioclimate Envelope Model) to assess the global patterns of change in species richness, invasion, and extinction intensity in the world oceans.
Abstract: Species distribution models (SDMs) are important tools to explore the effects of future global changes in biodiversity. Previous studies show that variability is introduced into projected distributions through alternative datasets and modelling procedures. However, a multi-model approach to assess biogeographic shifts at the global scale is still rarely applied, particularly in the marine environment. Here, we apply three commonly used SDMs (AquaMaps, Maxent, and the Dynamic Bioclimate Envelope Model) to assess the global patterns of change in species richness, invasion, and extinction intensity in the world oceans. We make species-specific projections of distribution shift using each SDM, subsequently aggregating them to calculate indices of change across a set of 802 species of exploited marine fish and invertebrates. Results indicate an average poleward latitudinal shift across species and SDMs at a rate of 15.5 and 25.6 km decade 21 for a low and high emissions climate change scenario, respectively. Predicted distribution shifts resulted in hotspots of local invasion intensity in high latitude regions, while local extinctions were concentrated near the equator. Specifically, between 108N and 108S, we predicted that, on average, 6.5 species would become locally extinct per 0.58 latitude under the climate change emissions scenario Representative Concentration Pathway 8.5. Average invasions were predicted to be 2.0 species per 0.58 latitude in the Arctic Ocean and 1.5 species per 0.58 latitude in the Southern Ocean. These averaged global hotspots of invasion and local extinction intensity are robust to the different SDM used and coincide with high levels of agreement.