scispace - formally typeset
Search or ask a question
Topic

Species richness

About: Species richness is a research topic. Over the lifetime, 61672 publications have been published within this topic receiving 2183796 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Differences in the dispersal potential of larvae and adults suggest that the effect of environmental changes and the effectiveness of reserves may differ between habitats, including the use of marine reserves.
Abstract: Life-history parameters were used to estimate the dispersal potential of 1021 marine macroinvertebrates recorded in species lists from 91 sites comprising rocky intertidal, subtidal, kelp forest, sandy beach, and soft-bottom habitats in Washington, Oregon, and California. Mean species richness was significantly greater in the California rocky subtidal habitat. Data on development mode, planktonic larval duration, rafting potential, and adult mobility were compiled, and summaries of the dispersal potentials of taxa within each habitat type were generated and compared. In summary, development mode was known or estimated for 76% of species; larval planktonic duration for 49%; adult mobility for 76%; and rafting potential for 46%. In comparisons of species' life-history traits among habitats, sand-dominated habitats were distinct from rocky habitats. In rocky habitats, ∼42% of species had planktonic feeding larvae, 43% had planktonic nonfeeding larvae, and 15% had nonplanktonic larvae. Sandy intertidal habitats had higher proportions of taxa with nondispersing, nonplanktonic larvae and lower proportions of planktonic feeding and nonfeeding larvae than all other sites. Soft-bottom subtidal communities had the highest proportion of taxa with planktonic feeding development and larvae with planktonic lifespans >30 d. Species in soft-bottom subtidal sites, therefore, have the greatest potential for extensive larval dispersal, whereas species in soft-bottom intertidal sites have the least potential for larval dispersal. In these sites with limited larval dispersal potential, there is greater potential for adult dispersal through adult movement and rafting. These differences in the dispersal potential of larvae and adults suggest that the effect of environmental changes and the effectiveness of reserves may differ between habitats. Conservation methods, including the use of marine reserves, must therefore be tailored to the habitat of interest if effective protection of community resources is to be achieved.

300 citations

Journal ArticleDOI
TL;DR: It is indicated that under warmed conditions, ecosystem water budget regulates the abundance and diversity of microbial populations and that rainfall timing is critical at the onset of drought for sustaining microbial populations.
Abstract: The soil microbiome is responsible for mediating key ecological processes; however, little is known about its sensitivity to climate change. Observed increases in global temperatures and alteration to rainfall patterns, due to anthropogenic release of greenhouse gases, will likely have a strong influence on soil microbial communities and ultimately the ecosystem services they provide. Therefore, it is vital to understand how soil microbial communities will respond to future climate change scenarios. To this end, we surveyed the abundance, diversity and structure of microbial communities over a 2-year period from a long-term in situ warming experiment that experienced a moderate natural drought. We found the warming treatment and soil water budgets strongly influence bacterial population size and diversity. In normal precipitation years, the warming treatment significantly increased microbial population size 40–150% but decreased diversity and significantly changed the composition of the community when compared with the unwarmed controls. However during drought conditions, the warming treatment significantly reduced soil moisture thereby creating unfavorable growth conditions that led to a 50–80% reduction in the microbial population size when compared with the control. Warmed plots also saw an increase in species richness, diversity and evenness; however, community composition was unaffected suggesting that few phylotypes may be active under these stressful conditions. Our results indicate that under warmed conditions, ecosystem water budget regulates the abundance and diversity of microbial populations and that rainfall timing is critical at the onset of drought for sustaining microbial populations.

300 citations

Journal ArticleDOI
TL;DR: In this article, the authors used correlation, overlap, and correlation analyses to assess spatial congruence between ecosystem services and species richness (plants and animals) and vegetation diversity hotspots.

300 citations

01 Jan 2009
TL;DR: In this paper, the authors examined species richness of woody plants, birds, bats, mantises and ants in game reserves where elephants had destroyed the miombo woodland and in adjacent but intact miombo woodlands outside the reserves.
Abstract: When elephant densities exceed approximately 0.5 per km[2], savanna woodlands are generally converted to shrub-lands or grasslands. The impact of such elephant-mediated habitat change on biodiversity in African game reserves has seldom been measured. We examined species richness of woody plants, birds, bats, mantises and ants in reserves where elephants had destroyed the miombo woodland and in adjacent but intact miombo woodlands outside the reserves. Species richness of woodland birds and ants was significantly lower where elephants had removed the tree canopy. Our findings may have important policy implications for conserving biodiversity in many African reserves in the face of rapidly growing elephant populations (approximately 5% per annum). The problem is further compounded by international public pressures against reducing elephant densities within game reserves while, outside these protected areas, savanna woodlands and their associated faunas are being lost to agriculture. Where then will refugia for habitat-sensitive species exist if not within the region's largest protected areas?

300 citations

Journal ArticleDOI
TL;DR: This study shows the need for long-term experimental analyses of community responses to grazing as vegetation responses may develop over a long time and suggests it may be possible to predict changes in species composition under grazing through an understanding of the mechanisms of plant responses.
Abstract: Summary 1There are few long-term experimental studies of plant community responses to changes in grazing intensity. Here we report species’ changes in a mesotrophic grassland after 12 years of a grazing experiment and relate these changes to species’ life-history traits. 2The experiment was set up in 1986 on an extensified species-poor grassland in lowland UK. Treatments comprised sheep grazing vs. no grazing in winter, grazing vs. no grazing in spring, and two grazing intensities in summer, in a 2 × 2 × 2 factorial design with two replicate blocks. 3Point quadrat surveys in 1998 showed responses to grazing treatments by 17 of the 22 most common species. Species showed different responses, many of which were specific to a grazing season. Community changes were similar under spring and winter grazing, but the heavier summer grazing had different consequences. Species richness was increased by spring grazing, decreased by heavier summer grazing and unaffected by winter grazing. 4More species responded to treatments in the 1998 survey compared with a survey in 1990. Furthermore, the whole experimental grassland had changed between the surveys, probably as a result of falling soil fertility. The two dominant grasses had declined drastically and most other species had increased in abundance. Five new species were found in 1998. 5Intensive surveys of dicotyledonous species in 1998 showed five of the 12 most common species had responded to grazing treatments. In most cases dicotyledonous species had increased in abundance under heavier grazing in one or more season, and species richness was increased by spring and winter grazing. Compared with a 1991 survey, the number of species responding to treatments had increased by 1998 and seven new species were found. 6We tested whether species’ responses to grazing were linked to life-history traits according to three hypotheses: that heavier grazing would disadvantage (i) species grazed preferentially, (ii) species less able to colonize gaps or (iii) more competitive species. Mechanisms differed among seasonal treatments. Responses to heavier summer grazing were linked strongly to gap colonization ability. Responses to spring and winter grazing were positively related to grazer selectivity, a surprising result that might be explained if selectivity was positively related to plant regrowth ability. 7This study shows the need for long-term experimental analyses of community responses to grazing as vegetation responses may develop over a long time. The traits analysis suggests it may be possible to predict changes in species composition under grazing through an understanding of the mechanisms of plant responses. Grassland managers require such information in order to manipulate grazing regimes to achieve, for example, diversification or weed control.

300 citations


Network Information
Related Topics (5)
Species diversity
32.2K papers, 1.2M citations
95% related
Biodiversity
44.8K papers, 1.9M citations
94% related
Habitat
25.2K papers, 825.7K citations
93% related
Ecosystem
25.4K papers, 1.2M citations
91% related
Biological dispersal
30K papers, 1.2M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20243
20232,454
20225,118
20213,510
20203,287
20193,254