scispace - formally typeset
Search or ask a question
Topic

Species richness

About: Species richness is a research topic. Over the lifetime, 61672 publications have been published within this topic receiving 2183796 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Positive and significant correlations between matrix abundance and vulnerability to fragmentation are exhibited, suggesting that species that avoid the matrix tend to decline or disappear in fragments, while those that tolerate or exploit the matrix often remain stable or increase.

772 citations

Journal ArticleDOI
TL;DR: Molecular phylogenies suggest multiple dispersal events into, out of, and within the SWAFR throughout the Cretaceous and Cenozoic; in many phylogenetically unrelated clades; and from many directions.
Abstract: ▪ Abstract Like South Africa's Greater Cape Floristic Region, the Southwest Australian Floristic Region (SWAFR) is species rich, with a Mediterranean climate and old, weathered, nutrient-deficient landscapes. This region has 7380 native vascular plants (species/subspecies): one third described since 1970, 49% endemic, and 2500 of conservation concern. Origins are complex. Molecular phylogenies suggest multiple dispersal events into, out of, and within the SWAFR throughout the Cretaceous and Cenozoic; in many phylogenetically unrelated clades; and from many directions. Either explosive speciation or steady cladogenesis occurred among some woody sclerophyll and herbaceous families from the mid-Tertiary in response to progressive aridity. Genomic coalescence was sometimes involved. Rainforest taxa went extinct by the Pleistocene. Old lineages nevertheless persist as one endemic order (Dasypogonales) and 6–11 endemic families. Such a rich flora on old landscapes that have been exposed to European land-use pra...

771 citations

Journal ArticleDOI
21 Dec 2007-Science
TL;DR: The phylogeny of Coleoptera found that the success of beetles is explained neither by exceptional net diversification rates nor by a predominant role of herbivory and the Cretaceous rise of angiosperms, suggesting that beetle species richness is due to high survival of lineages and sustained diversification in a variety of niches.
Abstract: Beetles represent almost one-fourth of all described species, and knowledge about their relationships and evolution adds to our understanding of biodiversity. We performed a comprehensive phylogenetic analysis of Coleoptera inferred from three genes and nearly 1900 species, representing more than 80% of the world's recognized beetle families. We defined basal relationships in the Polyphaga supergroup, which contains over 300,000 species, and established five families as the earliest branching lineages. By dating the phylogeny, we found that the success of beetles is explained neither by exceptional net diversification rates nor by a predominant role of herbivory and the Cretaceous rise of angiosperms. Instead, the pre-Cretaceous origin of more than 100 present-day lineages suggests that beetle species richness is due to high survival of lineages and sustained diversification in a variety of niches.

771 citations

Journal ArticleDOI
TL;DR: The results indicate that conservation benefits are disproportionally more costly on high-intensity than on low-intensity farmland, and conservation initiatives are most (cost-)effective if they are preferentially implemented in extensively farmed areas that still support high levels of biodiversity.
Abstract: Worldwide agriculture is one of the main drivers of biodiversity decline. Effective conservation strategies depend on the type of relationship between biodiversity and land-use intensity, but to date the shape of this relationship is unknown. We linked plant species richness with nitrogen (N) input as an indicator of land-use intensity on 130 grasslands and 141 arable fields in six European countries. Using Poisson regression, we found that plant species richness was significantly negatively related to N input on both field types after the effects of confounding environmental factors had been accounted for. Subsequent analyses showed that exponentially declining relationships provided a better fit than linear or unimodal relationships and that this was largely the result of the response of rare species (relative cover less than 1%). Our results indicate that conservation benefits are disproportionally more costly on high-intensity than on low-intensity farmland. For example, reducing N inputs from 75 to 0 and 400 to 60 kg ha−1 yr−1 resulted in about the same estimated species gain for arable plants. Conservation initiatives are most (cost-)effective if they are preferentially implemented in extensively farmed areas that still support high levels of biodiversity.

763 citations

Journal ArticleDOI
Myriam Sibuet1, Karine Olu1
TL;DR: The geographic distribution of seeps, the variations of origin and composition of fluids, and rates of fluid flow are presented as they are important factors which explain the spatial heterogeneity and the biomass of biological communities.
Abstract: To date, several cold-seep areas which fuel chemosynthesis-based benthic communities have been explored, mainly by deployment of manned submersibles. They are located in the Atlantic and in the Eastern and Western Pacific oceans and in the Mediterranean Sea, in depths ranging between 400 and 6000 m in different geological contexts in passive and active margins. Our study is based on a review of the existent literature on 24 deep cold seeps. The geographic distribution of seeps, the variations of origin and composition of fluids, and rates of fluid flow are presented as they are important factors which explain the spatial heterogeneity and the biomass of biological communities. Methane-rich fluid of thermogenic and/or biogenic origin is the principal source of energy for high-productive communities; however, production of sulphide by sulphate reduction in the sediment also has a major role. The dominant seep species are large bivalves belonging to the families Vesicomyidae or Mytilidae. Other symbiont-containing species occur belonging to Solemyidae, Thyasiridae, Lucinidae bivalves, Pogonophora worms, Cladorhizidae and Hymedesmiidae sponges. Most of the symbiont-containing cold-seep species are new to science. Different symbiont-containing species rely on sulphide or methane oxidation, or both, via chemoautotrophic endosymbiotic bacteria. A total of 211 species, from which 64 are symbiont-containing species, have been inventoried. Patterns in biodiversity and biogeography are proposed. A large majority of the species are endemic to a seep area and the symbiont-containing species are mainly endemic to the cold-seep ecosystem. A comparison of species found in other deep chemosynthesis-based ecosystems, hydrothermal vents, whale carcass and shipwreck reduced habitats, reveals from the existing data, that only 13 species, of which five are symbiont-containing species occur, at both seeps and hydrothermal vents. The species richness of cold-seep communities decreases with depth. High diversity compared to that on hydrothermal vent sites is found at several seeps. This may be explained by the duration of fluid flow, the sediment substrate which may favour long-term conditions with accumulation of sulphide and the evolution of cold seeps.

760 citations


Network Information
Related Topics (5)
Species diversity
32.2K papers, 1.2M citations
95% related
Biodiversity
44.8K papers, 1.9M citations
94% related
Habitat
25.2K papers, 825.7K citations
93% related
Ecosystem
25.4K papers, 1.2M citations
91% related
Biological dispersal
30K papers, 1.2M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20243
20232,454
20225,118
20213,510
20203,287
20193,254