scispace - formally typeset
Search or ask a question
Topic

Species richness

About: Species richness is a research topic. Over the lifetime, 61672 publications have been published within this topic receiving 2183796 citations.


Papers
More filters
Journal ArticleDOI
23 Sep 2011-Science
TL;DR: It is shown that sampling alone predicts changes in β diversity caused simply by changes in the sizes of species pools, and there is no need to invoke differences in the mechanisms of community assembly in temperate versus tropical systems to explain these global-scale patterns of β diversity.
Abstract: Understanding spatial variation in biodiversity along environmental gradients is a central theme in ecology. Differences in species compositional turnover among sites (β diversity) occurring along gradients are often used to infer variation in the processes structuring communities. Here, we show that sampling alone predicts changes in β diversity caused simply by changes in the sizes of species pools. For example, forest inventories sampled along latitudinal and elevational gradients show the well-documented pattern that β diversity is higher in the tropics and at low elevations. However, after correcting for variation in pooled species richness (γ diversity), these differences in β diversity disappear. Therefore, there is no need to invoke differences in the mechanisms of community assembly in temperate versus tropical systems to explain these global-scale patterns of β diversity.

625 citations

Journal ArticleDOI
TL;DR: A conceptual model of how high species richness and evenness in communities of terrestrial vertebrates may reduce risk of exposure to Lyme disease and suggests that increases in species diversity within host communities may dilute the power of white‐footed mice to infect ticks by causing more ticks to feed on inefficient disease reservoirs.
Abstract: Utilitarian arguments concerning the value of biodiversity often include the benefits of animals, plants, and microbes as sources of medicines and as laboratory models of disease. The concept that species di- versity per se may influence risk of exposure to disease has not been well developed, however. We present a conceptual model of how high species richness and evenness in communities of terrestrial vertebrates may re- duce risk of exposure to Lyme disease, a spirochetal ( Borrelia burgdorferi ) disease transmitted by ixodid tick vectors. Many ticks never become infected because some hosts are highly inefficient at transmitting spirochete infections to feeding ticks. In North America, the most competent reservoir host for the Lyme disease agent is the white-footed mouse ( Peromyscus leucopus ), a species that is widespread and locally abundant. We suggest that increases in species diversity within host communities may dilute the power of white-footed mice to in- fect ticks by causing more ticks to feed on inefficient disease reservoirs. High species diversity therefore is ex- pected to result in lower prevalence of infection in ticks and consequently in lower risk of human exposure to Lyme disease. Analyses of states and multistate regions along the east coast of the United States demonstrated significant negative correlations between species richness of terrestrial small mammals (orders Rodentia, In- sectivora, and Lagomorpha), a key group of hosts for ticks, and per capita numbers of reported Lyme disease cases, which supports our " dilution effect " hypothesis. We contrasted these findings to what might be expected when vectors acquire disease agents efficiently from many hosts, in which case infection prevalence of ticks may increase with increasing diversity hosts. A positive correlation between per capita Lyme disease cases and species richness of ground-dwelling birds supported this hypothesis, which we call the " rescue effect ." The reservoir competence of hosts within vertebrate communities and the degree of specialization by ticks on par- ticular hosts will strongly influence the relationship between species diversity and the risk of exposure to the many vector-borne diseases that plague humans.

625 citations

Journal ArticleDOI
01 Dec 1998-Ecology
TL;DR: The hypothesis that the impacts of grazers on plant species richness reverse under contrasting nutrient richness is tested, and it is suggested that species richness declines with high grazing in nutrient-poor ecosystems because a limitation of available resources prevents regrowth of species after grazing.
Abstract: To test the hypothesis that the impacts of grazers on plant species richness reverse under contrasting nutrient richness, we analyzed unpublished and published data from lake, stream, marine, grassland, and forest ecosystems. We analyzed data from 30 studies providing 44 comparisons of plant species richness under low vs. high grazing pressure in enriched or nutrient-rich and non-enriched or nutrient-poor ecosystems. All 19 comparisons from non-enriched or nutrient-poor ecosystems exhibited significantly lower species richness under high grazing than under low grazing. In contrast, 14 of 25 comparisons from enriched or nutrient-rich ecosystems showed significantly higher species richness under high grazing than under low grazing. However, nine of these 25 comparisons showed no significant impact of grazers on species richness, while two comparisons showed declines in species richness under high grazing. Based on all the comparisons, plant species richness decreases with high grazing in nutrient-poor ecosystems, while it increases with high grazing in nutrient-rich ecosystems. Although nutrient-rich ecosystems seemed to produce more variable responses to grazers than did nutrient-poor ecosystems, in rare cases high grazing produced a decline in species richness in nutrient-rich environments. We suggest that species richness declines with high grazing in nutrient-poor ecosystems because a limitation of available resources prevents regrowth of species after grazing, which may not be the case in nutrient-rich ecosystems. It is also possible that an increase in species richness under high grazing in nutrient-rich ecosystems may be due to an increase in the dominance of inedible species. Our observation of a grazer reversal of plant species richness under contrasting nutrient richness may have important implications for management of species diversity.

625 citations

Journal ArticleDOI
TL;DR: In this paper, a large-scale study of 25 agricultural landscapes in seven European countries, the authors investigated relationships between species richness in several taxa, and the links between biodiversity and landscape structure and management.
Abstract: Summary 1. In many European agricultural landscapes, species richness is declining considerably. Studies performed at a very large spatial scale are helpful in understanding the reasons for this decline and as a basis for guiding policy. In a unique, large-scale study of 25 agricultural landscapes in seven European countries, we investigated relationships between species richness in several taxa, and the links between biodiversity and landscape structure and management. 2. We estimated the total species richness of vascular plants, birds and five arthropod groups in each 16-km 2 landscape, and recorded various measures of both landscape structure and intensity of agricultural land use. We studied correlations between taxonomic groups and the effects of landscape and land-use parameters on the number of species in different taxonomic groups. Our statistical approach also accounted for regional variation in species richness unrelated to landscape or land-use factors. 3. The results reveal strong geographical trends in species richness in all taxonomic groups. No single species group emerged as a good predictor of all other species groups. Species richness of all groups increased with the area of semi-natural habitats in the landscape. Species richness of birds and vascular plants was negatively associated with fertilizer use. 4. Synthesis and applications. We conclude that indicator taxa are unlikely to provide an effective means of predicting biodiversity at a large spatial scale, especially where there is large biogeographical variation in species richness. However, a small list of landscape and land-use parameters can be used in agricultural landscapes to infer large-scale patterns of species richness. Our results suggest that to halt the loss of biodiversity in these landscapes, it is important to preserve and, if possible, increase the area of semi-natural habitat.

624 citations

Journal ArticleDOI
25 Apr 2002-Nature
TL;DR: It is shown that most herbivorous species feed on several closely related plant species, suggesting that species-rich genera are dominant in tropical floras, and monophagous herbivores are probably rare in tropical forests.
Abstract: Two decades of research have not established whether tropical insect herbivores are dominated by specialists or generalists. This impedes our understanding of species coexistence in diverse rainforest communities. Host specificity and species richness of tropical insects are also key parameters in mapping global patterns of biodiversity. Here we analyse data for over 900 herbivorous species feeding on 51 plant species in New Guinea and show that most herbivorous species feed on several closely related plant species. Because species-rich genera are dominant in tropical floras, monophagous herbivores are probably rare in tropical forests. Furthermore, even between phylogenetically distant hosts, herbivore communities typically shared a third of their species. These results do not support the classical view that the coexistence of herbivorous species in the tropics is a consequence of finely divided plant resources; non-equilibrium models of tropical diversity should instead be considered. Low host specificity of tropical herbivores reduces global estimates of arthropod diversity from 31 million (ref. 1) to 4 6 million species. This finding agrees with estimates based on taxonomic collections, reconciling an order of magnitude discrepancy between extrapolations of global diversity based on ecological samples of tropical communities with those based on sampling regional faunas.

623 citations


Network Information
Related Topics (5)
Species diversity
32.2K papers, 1.2M citations
95% related
Biodiversity
44.8K papers, 1.9M citations
94% related
Habitat
25.2K papers, 825.7K citations
93% related
Ecosystem
25.4K papers, 1.2M citations
91% related
Biological dispersal
30K papers, 1.2M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20243
20232,454
20225,118
20213,510
20203,287
20193,254