scispace - formally typeset
Search or ask a question
Topic

Species richness

About: Species richness is a research topic. Over the lifetime, 61672 publications have been published within this topic receiving 2183796 citations.


Papers
More filters
Book
01 Jan 1994
TL;DR: The economics of biological diversity have been studied extensively in the literature as discussed by the authors, with a focus on the maintenance of local species diversity at various spatial and temporal scales, such as landscapes and marine ecosystems.
Abstract: 1. Introduction Part I. Raw Materials and Tools: 2. General patterns of species diversity 3. The assessment of species diversity Part II. Theories of Species Diversity: Equilibrium and Non-Equilibrium: 4. Equilibrium processes and the maintenance of landscape-scale species diversity 5. Non-equilibrium processes and the maintenance of local species diversity Part III. Mechanisms that Regulate Biological Diversity at Various Spatial and Temporal Scales: 6. Diversity within populations 7. Individual properties and the structure of communities and ecosystems 8. Landscape patterns: disturbance and diversity 9. Landscape patterns: succession and temporal change 10. Landscape patterns: gradients and zonation Part IV. Case Studies: Patterns and Hypotheses: 11. Case studies: endemism and invasions 12. Case studies: species diversity in marine ecosystems 13. Case studies: species diversity in fire-influenced ecosystems 14. Case studies: species diversity in tropical rain forests 15. Concluding comments: the economics of biological diversity.

2,172 citations

Journal ArticleDOI
TL;DR: It is shown that the higher taxonomic classification of species follows a consistent and predictable pattern from which the total number of species in a taxonomic group can be estimated, and when applied to all domains of life, it predicts ∼8.7 million eukaryotic species globally.
Abstract: The diversity of life is one of the most striking aspects of our planet; hence knowing how many species inhabit Earth is among the most fundamental questions in science. Yet the answer to this question remains enigmatic, as efforts to sample the world's biodiversity to date have been limited and thus have precluded direct quantification of global species richness, and because indirect estimates rely on assumptions that have proven highly controversial. Here we show that the higher taxonomic classification of species (i.e., the assignment of species to phylum, class, order, family, and genus) follows a consistent and predictable pattern from which the total number of species in a taxonomic group can be estimated. This approach was validated against well-known taxa, and when applied to all domains of life, it predicts ∼8.7 million (±1.3 million SE) eukaryotic species globally, of which ∼2.2 million (±0.18 million SE) are marine. In spite of 250 years of taxonomic classification and over 1.2 million species already catalogued in a central database, our results suggest that some 86% of existing species on Earth and 91% of species in the ocean still await description. Renewed interest in further exploration and taxonomy is required if this significant gap in our knowledge of life on Earth is to be closed.

2,147 citations

Journal ArticleDOI
01 Dec 2003-Ecology
TL;DR: In this paper, the authors examine the relationship between climate and biodiversity and conclude that the interaction between water and energy, either directly or indirectly, provides a strong explanation for globally extensive plant and animal diversity gradients, but for animals there also is a latitudinal shift in the relative importance of ambient energy vs. water moving from the poles to the equator.
Abstract: It is often claimed that we do not understand the forces driving the global diversity gradient. However, an extensive literature suggests that contemporary climate constrains terrestrial taxonomic richness over broad geographic extents. Here, we review the empirical literature to examine the nature and form of the relationship between climate and richness. Our goals were to document the support for the climatically based energy hypothesis, and within the constraints imposed by correlative analyses, to evaluate two versions of the hypothesis: the productivity and ambient energy hypotheses. Focusing on studies extending over 800 km, we found that measures of energy, water, or water-energy balance explain spatial variation in richness better than other climatic and non-climatic variables in 82 of 85 cases. Even when considered individually and in isolation, water/ energy variables explain on average over 60% of the variation in the richness of a wide range of plant and animal groups. Further, water variables usually represent the strongest predictors in the tropics, subtropics, and warm temperate zones, whereas energy variables (for animals) or water-energy variables (for plants) dominate in high latitudes. We conclude that the interaction between water and energy, either directly or indirectly (via plant productivity), provides a strong explanation for globally extensive plant and animal diversity gradients, but for animals there also is a latitudinal shift in the relative importance of ambient energy vs. water moving from the poles to the equator. Although contemporary climate is not the only factor influencing species richness and may not explain the diversity pattern for all taxonomic groups, it is clear that understanding water-energy dynamics is critical to future biodiversity research. Analyses that do not include water-energy variables are missing a key component for explaining broad-scale patterns of diversity.

2,069 citations

Journal ArticleDOI
TL;DR: This work describes how niche conservatism in climatic tolerances may limit geographic range expansion and how this one type of niche conservatism may be important in allopatric speciation and the spread of invasive, human-introduced species.
Abstract: ▪ Abstract Niche conservatism is the tendency of species to retain ancestral ecological characteristics. In the recent literature, a debate has emerged as to whether niches are conserved. We suggest that simply testing whether niches are conserved is not by itself particularly helpful or interesting and that a more useful focus is on the patterns that niche conservatism may (or may not) create. We focus specifically on how niche conservatism in climatic tolerances may limit geographic range expansion and how this one type of niche conservatism may be important in (a) allopatric speciation, (b) historical biogeography, (c) patterns of species richness, (d) community structure, (e) the spread of invasive, human-introduced species, (f) responses of species to global climate change, and (g) human history, from 13,000 years ago to the present. We describe how these effects of niche conservatism can be examined with new tools for ecological niche modeling.

2,039 citations

Journal ArticleDOI
01 Jul 1999-Ecology
TL;DR: In this paper, the authors show that comparisons of invasibility between regions are impossible to make unless one can control for all of the variables that influence exotic richness, including the rates of immigration of species and the characteristics of the invading species themselves.
Abstract: With a simple model, I show that comparisons of invasibility between regions are impossible to make unless one can control for all of the variables besides invasibility that influence exotic richness, including the rates of immigration of species and the characteristics of the invading species themselves. Using data from the literature for 184 sites around the world, I found that nature reserves had one-half of the exotic fraction of sites outside reserves, and island sites had nearly three times the exotic fraction of mainland sites. However, the exotic fraction and the number of exotics were also dependent on site area, and this had to be taken into account to make valid comparisons between sites. The number of native species was used as a surrogate for site area and habitat diversity. Nearly 70% of the variation in the number of exotic species was accounted for by a multiple regression containing the following predictors: the number of native species, whether the site was an island or on the mainland, and whether or not it was a nature reserve. After controlling for scale, there were significant differences among biomes, but not continents, in their level of invasion. Multiple biome regions and temperate agricultural or urban sites were among the most invaded biomes, and deserts and savannas were among the least. However, there was considerable within-group variation in the mean degree of invasion. Scale-controlled analysis also showed that the New World is significantly more invaded than the Old World, but only when site native richness (probably a surrogate for habitat diversity) is factored out. Contrary to expectation, communities richer in native species had more, not fewer, exotics. For mainland sites, the degree of invasion increased with latitude, but there was no such relationship for islands. Although islands are more invaded than mainland sites, this is apparently not because of low native species richness, as the islands in this data set were no less rich in native species than were mainland sites of similar area. The number of exotic species in nature reserves increases with the number of visitors. However, it is difficult to draw conclusions about relative invasibility, invasion potential, or the roles of dispersal and disturbance from any of these results. Most of the observed patterns here and in the literature could potentially be explained by differences between regions in species properties, ecosystem properties, or propagule pressure.

1,919 citations


Network Information
Related Topics (5)
Species diversity
32.2K papers, 1.2M citations
95% related
Biodiversity
44.8K papers, 1.9M citations
94% related
Habitat
25.2K papers, 825.7K citations
93% related
Ecosystem
25.4K papers, 1.2M citations
91% related
Biological dispersal
30K papers, 1.2M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20243
20232,454
20225,118
20213,510
20203,287
20193,254