scispace - formally typeset
Search or ask a question

Showing papers on "Speckle imaging published in 2012"


Journal ArticleDOI
TL;DR: Recently a number of technical advances have been developed to improve the quantitative accuracy and temporal resolution of speckle imaging and this article reviews some of these recent advances and describes several applications of speckingle imaging.
Abstract: Laser speckle contrast imaging (LSCI) has emerged over the past decade as a powerful, yet simple, method for imaging of blood flow dynamics in real time. The rapid adoption of LSCI for physiological studies is due to the relative ease and low cost of building an instrument as well as the ability to quantify blood flow changes with excellent spatial and temporal resolution. Although measurements are limited to superficial tissues with no depth resolution, LSCI has been instrumental in pre-clinical studies of neurological disorders as well as clinical applications including dermatological, neurosurgical and endoscopic studies. Recently a number of technical advances have been developed to improve the quantitative accuracy and temporal resolution of speckle imaging. This article reviews some of these recent advances and describes several applications of speckle imaging.

226 citations


Journal ArticleDOI
TL;DR: The results of speckle observations at the 4.1 m SOAR telescope in 2010 and 2011 were reported in this paper, where a total of 639 objects were observed.
Abstract: We report on the results of speckle observations at the 4.1 m SOAR telescope in 2010 and 2011. A total of 639 objects were observed. We give 562 measurements of 418 resolved binaries, including 21 pairs resolved for the first time, and upper detection limits for 221 unresolved stars. New orbital elements have been determined for 42 physical pairs, of which 22 are first-time calculations; the rest are corrections, sometimes substantial. Linear elements are calculated for nine apparently optical doubles. We comment on new pairs, new orbital solutions, and other remarkable objects.

107 citations


Journal ArticleDOI
TL;DR: An optimized 3D digital image correlation (3D-DIC) system using active optical imaging is developed for accurate shape and 3D deformation measurements in nonlaboratory conditions or extreme high-temperature environments using a combination of monochromatic lighting and bandpass filter imaging.
Abstract: An optimized 3D digital image correlation (3D-DIC) system using active optical imaging is developed for accurate shape and 3D deformation measurements in nonlaboratory conditions or extreme high-temperature environments. In contrast to a conventional 3D-DIC system using white or natural light illumination, the proposed active imaging 3D-DIC system is based on a combination of monochromatic lighting and bandpass filter imaging. Because the bandpass filter attached before the imaging lenses allows only the actively illuminated monochromatic light to pass through and blocks all light outside of its bandpass range, the active imaging 3D-DIC system is therefore insensitive to serious variations in ambient light in nonlaboratory environments and to the thermal radiation of hot objects in extreme high-temperature environments. Two challenging experiments that cannot be performed by a conventional 3D-DIC system were carried out to verify the robustness and accuracy of the developed active imaging 3D-DIC system. Because a much wider application range can be achieved with relatively simple and easy-to-implement improvements, the proposed active imaging 3D-DIC system is highly recommended for practical use instead of the conventional 3D-DIC system.

98 citations


Journal ArticleDOI
TL;DR: Speckle contrast close to that of white light was obtained using a vibrating fiber bundle with combined temporal, spatial, and angular diversities of the illumination.
Abstract: We report significant speckle reduction in a laser illumination system using a vibrating multimode optical fiber bundle. The optical fiber bundle was illuminated by two independent lasers simultaneously. The beams from both lasers were first expanded and collimated and were further divided into multiple beams to illuminate the fiber optic bundle with normal and oblique incidence. Static diffusers were also placed at the input and output faces of the fiber bundle, thus introducing the spatial as well as angular diversity of illumination. Experiments were carried out both in free space and in imaging geometry configuration. Standard deviation, speckle contrast and signal-to-noise ratio of the images were computed, and the results were compared with those of white light illumination. Speckle contrast close to that of white light was obtained using a vibrating fiber bundle with combined temporal, spatial, and angular diversities of the illumination.

84 citations


Journal ArticleDOI
TL;DR: In this paper, a theoretical framework based on the Ewald sphere construction is proposed to estimate the depth resolution and displacement sensitivity for any given optical geometry and wavelength scan range, and the related issue of robust phase unwrapping of noisy 3-D wrapped phase volumes is also described.

81 citations


Journal ArticleDOI
TL;DR: In this paper, the authors examined the coherent amplification of the static speckle contribution to the noise variance in the scientific image, through its interaction with quasi-static speckles.
Abstract: The major noise source limiting high-contrast imaging is due to the presence of quasi-static speckles. Speckle noise originates from wavefront errors caused by various independent sources, and it evolves on different timescales pending to their nature. An understanding of quasi-static speckles originating from instrumental errors is paramount for the search of faint stellar companions. Instrumental speckles average to a fixed pattern, which can be calibrated to a certain extent, but their temporal evolution ultimately limit this possibility. This study focuses on the laboratory evidence and characterization of the quasi-static pinned speckle phenomenon. Specifically, we examine the coherent amplification of the static speckle contribution to the noise variance in the scientific image, through its interaction with quasi-static speckles. The analysis of a time series of adaptively corrected, coronagraphic images recorded in the laboratory enables the characterization of the temporal stability of the residual speckle pattern in both direct and differential coronagraphic images. We estimate that spoiled and fast-evolving quasi-static speckles present in the system at the angstrom/nanometer level are affecting the stability of the static speckle noise in the final image after the coronagraph. The temporal evolution of the quasi-static wavefront error exhibits linear power law, which can be used in first order to model quasi-static speckle evolution in high-contrast imaging instruments.

55 citations


Journal ArticleDOI
TL;DR: A novel focal plane wavefront sensor (WFS) designed for exoplanet direct imaging is presented, an extension of the phase diversity technique to coronagraphic imaging and shows the potential of this WFS by means of simulations, and a preliminary experimental validation is performed.
Abstract: Exoplanet direct imaging is a challenging goal of today’s astronomical instrumentation. Several high-contrast imaging instruments dedicated to this task are currently being integrated; they are ultimately limited by the presence of quasi-static speckles in the imaging focal plane. These speckles originate in residual quasi-static optical aberrations, which must be measured and compensated for, typically at a nanometric level. We present a novel focal plane wavefront sensor (WFS) designed for this particular application. It is an extension of the phase diversity technique to coronagraphic imaging. This sensor requires no dedicated hardware and uses only two scientific images differing from a known aberration, which can be conveniently introduced by the adaptive optics subsystem. The aberrations are therefore calibrated all the way down to the scientific camera, without any differential aberrations between the sensor and the scientific camera. We show the potential of this WFS by means of simulations, and we perform a preliminary experimental validation.

51 citations


Journal ArticleDOI
TL;DR: The results of speckle observations at the 4.1 m SOAR telescope in 2012 (158 measures of 121 systems, 27 non-resolutions) are reported in this paper.
Abstract: Results of speckle observations at the 4.1 m SOAR telescope in 2012 (158 measures of 121 systems, 27 non-resolutions) are reported. The aim is to follow fast orbital motion of recently discovered or neglected close binaries and sub-systems. Here, eight previously known orbits are defined better, two more are completely revised, and five orbits are computed for the first time. Using differential photometry from Hipparcos or speckle and the standard relation between mass and absolute magnitude, the component's masses and dynamical parallaxes are estimated for all 15 systems with new or updated orbits. Two astrometric binaries HIP 54214 and 56245 are resolved here for the first time, another eight are measured. We highlight several unresolved pairs that may actually be single despite multiple historic measures, such as 104 Tau and f Pup AB. Continued monitoring is needed to understand those enigmatic cases.

51 citations


Patent
09 Jan 2012
TL;DR: In this paper, a non-invasive method for determining blood flow distribution in a region of interest is presented, which includes illuminating a region with a coherent light source and sequentially acquiring at least two speckle images of the region of the interest.
Abstract: Non-invasive methods for determining blood flow distribution in a region of interest are provided. The method includes illuminating a region of interest of a subject with a coherent light source; sequentially acquiring at least two speckle images of the region of interest, wherein sequentially acquiring the at least two speckle images comprises acquiring the at least two speckle images in synchronization with motion of the heart of the subject; and electronically processing the at least two acquired speckle images based on the temporal variation of the pixel intensities in the at least two acquired speckle images to generate a laser speckle contrast imaging (LSCI) image, determine distribution of blood flow speed in principal vessels and quantify perfusion distribution in tissue in the region of interest from the LSCI image. The LSCI image enables detection of different blood flow speeds.

41 citations


Proceedings ArticleDOI
16 Jun 2012
TL;DR: A new imaging technique that combines computational photography and laser speckle imaging that provides a reliable way of detecting subtle surface contact at a level that was previously only possible under laboratory conditions is introduced.
Abstract: It is often desirable to detect whether a surface has been touched, even when the changes made to that surface are too subtle to see in a pair of before and after images. To address this challenge, we introduce a new imaging technique that combines computational photography and laser speckle imaging. Without requiring controlled laboratory conditions, our method is able to detect surface changes that would be indistinguishable in regular photographs. It is also mobile and does not need to be present at the time of contact with the surface, making it well suited for applications where the surface of interest cannot be constantly monitored. Our approach takes advantage of the fact that tiny surface deformations cause phase changes in reflected coherent light which alter the speckle pattern visible under laser illumination. We take before and after images of the surface under laser light and can detect subtle contact by correlating the speckle patterns in these images. A key challenge we address is that speckle imaging is very sensitive to the location of the camera, so removing and reintroducing the camera requires high-accuracy viewpoint alignment. To this end, we use a combination of computational rephotog-raphy and correlation analysis of the speckle pattern as a function of camera translation. Our technique provides a reliable way of detecting subtle surface contact at a level that was previously only possible under laboratory conditions. With our system, the detection of these subtle surface changes can now be brought into the wild.

34 citations


Journal ArticleDOI
TL;DR: It is demonstrated that a digital single-lens reflex (dSLR) camera with a Bayer filter is able to provide similar sensitivity despite taking information only from a specific pixel color.
Abstract: Laser speckle imaging (LSI) is a noninvasive optical imaging technique able to provide wide-field two-dimensional maps of moving particles. Raw laser speckle images are typically taken with a scientific-grade monochrome camera. We demonstrate that a digital single-lens reflex (dSLR) camera with a Bayer filter is able to provide similar sensitivity despite taking information only from a specific pixel color. Here we demonstrate the effect of changing three primary dSLR exposure settings (i.e., aperture, exposure time/shutter speed, and gain/sensitivity (ISO)) on speckle contrast. In addition, we present data from an in vivo reactive hyperemia experiment that demonstrates the qualitative similarity in blood-flow dynamics visualized with a color dSLR and a scientific-grade monochrome camera.

Journal ArticleDOI
TL;DR: The results of speckle observations at the 4.1m SOAR telescope in 2012 (158 measures of 121 systems, 27 non-resolutions) are reported in this article.
Abstract: Results of speckle observations at the 4.1-m SOAR telescope in 2012 (158 measures of 121 systems, 27 non-resolutions) are reported. The aim is to follow fast orbital motion of recently discovered or neglected close binaries and sub-systems. Here 8 previously known orbits are defined better, two more are completely revised, and five orbits are computed for the first time. Using differential photometry from Hipparcos or speckle and the standard relation between mass and absolute magnitude, the component's masses and dynamical parallaxes are estimated for all 15 systems with new or updated orbits. Two astrometric binaries HIP 54214 and 56245 are resolved here for the first time, another 8 are measured. We highlight several unresolved pairs that may actually be single despite multiple historic measures, such as 104 Tau and f Pup AB. Continued monitoring is needed to understand those enigmatic cases.

Journal ArticleDOI
Jia Qin1, Lei Shi1, Suzan Dziennis1, Roberto Reif1, Ruikang K. Wang1 
TL;DR: A newly developed synchronized dual-wavelength laser speckle contrast imaging system, which contains two cameras that are synchronously triggered to acquire data, which will enable the study of fast hemodynamics and metabolic changes in vascular diseases.
Abstract: In this Letter, we describe a newly developed synchronized dual-wavelength laser speckle contrast imaging system, which contains two cameras that are synchronously triggered to acquire data. The system can acquire data at a high spatiotemporal resolution (up to 500 Hz for ∼1000×1000 pixels). A mouse model of stroke is used to demonstrate the capability for imaging the fast changes (within tens of milliseconds) in oxygenated and deoxygenated hemoglobin concentration, and the relative changes in blood flow in the mouse brain, through an intact cranium. This novel imaging technology will enable the study of fast hemodynamics and metabolic changes in vascular diseases.

Journal ArticleDOI
TL;DR: Measurements show that the speckle grain size is both affected by the glucose level inside the fruits and by the chlorophyll content, and indicate that a Rayleigh diffusion regime gradually becomes predominant in fruits.
Abstract: This paper reports monitoring fruits maturation using speckle technique. Performed measurements aim the assessing of biological inner fruit variation effect on the speckle image. We show that the speckle grain size is both affected by the glucose level inside the fruits and by the chlorophyll content. Moreover, the determination of circular polarization degree and circular grain size indicate that a Rayleigh diffusion regime gradually becomes predominant in fruits. Principal component analysis is used to highlight high correlation between results and strengthen the establishment of speckle as a novel non invasive method to monitor fruits ripening.

Journal ArticleDOI
TL;DR: In this article, a diffractive beam shaper with a cylindrical lens and a vibrating motor was used to eliminate laser speckle on the projection screen, which can achieve uniformity and contrast of 78% and 5.5% respectively, which demonstrates the feasibility and potential of the proposed scheme.
Abstract: Currently the major issues in applying the laser as an illumination source for projectors are beam shaping and laser speckle. We present a compact total solution for both issues by using a diffractive beam shaper associated with a cylindrical lens for the illumination optics and a vibrating motor attached to the beam shaper to eliminate speckle on the projection screen. The diffractive beam shaper features a double-sided microlens array with a lateral shift to each other. The illumination pattern is free of zero diffraction order mainly due to the continuous and spherical surface relief of the lenslet, which can be accurately fabricated with diamond turning and injection molding without quantizing surface relief, so that the illumination pattern on the microdisplay can match the design very well with high diffraction efficiency. In addition, the vibration of the diffractive beam shaper in the longitudinal mode has been found effective for eliminating the dot pattern in the illumination and reducing laser speckle on the projection screen. The proposed laser illuminator has been implemented on a three-panel LCoS projector engine to replace the traditional UHP lamp. The uniformity and speckle contrast are measured to be 78% and 5.5% respectively, which demonstrates the feasibility and potential of the proposed scheme.

Journal ArticleDOI
TL;DR: In this paper, the results of speckle interferometry of a sample of 117 chemically peculiar stars with global magnetic fields were presented, which revealed no secondary components within their study.
Abstract: We present the results of speckle interferometry of a sample of 117 chemically peculiar stars with global magnetic fields. The observations were made in December 2009 at the BTA with a spatial resolution of about 0.02″ in the visual spectral region. Twenty-nine stars were resolved into individual components, 14 of them for the first time (HD965, HD5797, HD8855, HD10783, HD16605, HD21699, HD35502, HD51418, HD64486, HD79158, HD103498, HD108651, HD213918, HD293764). In twelve cases a companion turned out to be 2–4 m fainter than the main component—a magnetic star. Young hot Bp stars HD35502 and HD213918 are exceptions, since their companions are fainter by about 1 m . In all cases, the linear distance from a star to its companion at the epoch of observations in the picture plane exceeded 109 km. Eighty-eight magnetic CP stars revealed no secondary components within our study. Thus, the fraction of speckle interferometric binaries in our sample amounts to 25%.

Journal ArticleDOI
TL;DR: Both the phantom and animal experimental results suggest that localized illumination and lateral speckle contrast analysis can significantly enhance the deep blood flow signal to improve the sampling depth of laser specksle contrast imaging compared with the traditional full-field illumination laser speckles contrast analysis method.
Abstract: We present a lateral laser speckle contrast analysis method combined with line beam scanning illumination to improve the sampling depth of blood flow imaging. Both the phantom and animal experimental results suggest that localized illumination and lateral speckle contrast analysis can significantly enhance the deep blood flow signal to improve the sampling depth of laser speckle contrast imaging compared with the traditional full-field illumination laser speckle contrast analysis method.

Journal ArticleDOI
TL;DR: In this article, a speckle subtraction and suppression technique was proposed to take advantage of the high contrast provided by the coronagraph, as well as the wave front corrected by the adaptive optics.
Abstract: Future ground-based direct imaging of exoplanets depends critically on high-contrast coronagraph and wave-front manipulation. A coronagraph is designed to remove most of the unaberrated starlight. Because of the wave-front error, which is inherit from the atmospheric turbulence from ground observations, a coronagraph cannot deliver its theoretical performance, and speckle noise will limit the high-contrast imaging performance. Recently, extreme adaptive optics, which can deliver an extremely high Strehl ratio, is being developed for such a challenging mission. In this publication, we show that barely taking a long-exposure image does not provide much gain for coronagraphic imaging with adaptive optics. We further discuss a speckle subtraction and suppression technique that fully takes advantage of the high contrast provided by the coronagraph, as well as the wave front corrected by the adaptive optics. This technique works well for coronagraphic imaging with conventional adaptive optics with a moderate Strehl ratio, as well as for extreme adaptive optics with a high Strehl ratio. We show how to substrate and suppress speckle noise efficiently up to the third order, which is critical for future ground-based high-contrast imaging. Numerical simulations are conducted to fully demonstrate this technique.

Journal ArticleDOI
TL;DR: A controlled validation experiment is performed, which confirms the ability of the wavelength scanning interferometry technique to provide 3D displacement distributions inside semitransparent scattering materials.
Abstract: A wavelength scanning interferometry system is proposed that provides displacement fields inside the volume of semitransparent scattering materials with high spatial resolution and three-dimensional (3D) displacement sensitivity. This effectively extends digital speckle pattern interferometry into three dimensions. The sample is illuminated by three noncoplanar collimated beams around the observation direction. Sequences of two-dimensional interferograms are recorded while tuning the laser frequency at a constant rate. Different optical paths along each illumination direction ensure that the signals corresponding to each sensitivity vector do not overlap in the frequency domain. All the information required to reconstruct the location and the 3D displacement vector of scattering points within the material is thus recorded simultaneously. A controlled validation experiment is performed, which confirms the ability of the technique to provide 3D displacement distributions inside semitransparent scattering materials.

Journal ArticleDOI
TL;DR: A normalized laser speckle spatial contrast analysis (nLSSCA) is presented to correct the detrimental effects of nonuniform intensity distribution on the spatial statistics and could be a potential tool for fiber-transmitting/endoscopic laser Speckle imaging.
Abstract: Laser speckle spatial contrast analysis (LSSCA) is superior to laser speckle temporal contrast analysis (LSTCA) in monitoring the fast change in blood flow due to its advantage of high temporal resolution. However, the application of LSSCA which is based on spatial statistics may be limited when there is nonuniform intensity distribution such as fiber-transmitting laser speckle imaging. In this study, we present a normalized laser speckle spatial contrast analysis (nLSSCA) to correct the detrimental effects of nonuniform intensity distribution on the spatial statistics. Through numerical simulation and phantom experiments, it is found that just ten frames of dynamic laser speckle images are sufficient for nLSSCA to achieve effective correction. Furthermore, nLSSCA has higher temporal resolution than LSTCA to respond the change in velocity. LSSCA, LSTCA and nLSSCA are all applied in the fiber-transmitting laser speckle imaging system to analyze the change of cortical blood flow (CBF) during cortical spreading depression (CSD) in rat cortex respectively, and the results suggest that nLSSCA can examine the change of CBF more accurately. For these advantages, nLSSCA could be a potential tool for fiber-transmitting/endoscopic laser speckle imaging.

Journal ArticleDOI
TL;DR: The proposed method relies on introducing a specially designed phase object into the specimen plane during the image recording, which serves as a constraint in the subsequent phase retrieval algorithm, which leads to faster algorithm convergence and improved final accuracy.
Abstract: Measuring transmission and optical thickness of an object with a single intensity recording is desired in many fields of imaging research. One possibility to achieve this is to employ phase retrieval algorithms. We propose a method to significantly improve the performance of such algorithms in optical imaging. The method relies on introducing a specially designed phase object into the specimen plane during the image recording, which serves as a constraint in the subsequent phase retrieval algorithm. This leads to faster algorithm convergence and improved final accuracy. Quantitative imaging can be performed by a single recording of the resulting diffraction pattern in the camera plane, without using lenses or other optical elements. The method allows effective suppression of the “twin-image”, an artefact that appears when holograms are read out. Results from numerical simulations and experiments confirm a high accuracy which can be comparable to that of phase-stepping interferometry.

Journal ArticleDOI
TL;DR: The general description for partial differential equations (PDEs) based image processing methods, including the basic idea, the main advantages and disadvantages, a few representative PDE models, and the derivation of Pde models are presented.
Abstract: In this paper, we first present the general description for partial differential equations (PDEs) based image processing methods, including the basic idea, the main advantages and disadvantages, a few representative PDE models, and the derivation of PDE models. Then we review our contributions on PDE-based anisotropic filtering methods for electronic speckle pattern interferometry, including the second-order, fourth-order, and coupled nonoriented PDE filtering models and the second-order and coupled nonlinear oriented PDE filtering models. We have summarized the features of each model.

Journal ArticleDOI
TL;DR: Spatial speckle intensity correlations are used to determine the spatial Fourier magnitude of a field incident on a random scattering medium.
Abstract: Spatial speckle intensity correlations are used to determine the spatial Fourier magnitude of a field incident on a random scattering medium The patterned beam is scanned across the scattering medium, and the speckle pattern on the opposite side is imaged at each beam position A theory based on a Green's function representation is used to reconstruct the spatial Fourier magnitude of the patterned incident field

Journal ArticleDOI
TL;DR: The ESPI interferometer and numerical data analysis procedure presented herein provide reliable, accurate, and repeatable measurement of sub-micrometer deformations obtained from pressurization tests of spherically-shaped specimens immersed in aqueous salt solution.
Abstract: We proposed and validated a compensation method that accounts for the optical distortion inherent in measuring displacements on specimens immersed in aqueous solution. A spherically-shaped rubber specimen was mounted and pressurized on a custom apparatus, with the resulting surface displacements recorded using electronic speckle pattern interferometry (ESPI). Point-to-point light direction computation is achieved by a ray-tracing strategy coupled with customized B-spline-based analytical representation of the specimen shape. The compensation method reduced the mean magnitude of the displacement error induced by the optical distortion from 35% to 3%, and ESPI displacement measurement repeatability showed a mean variance of 16 nm at the 95% confidence level for immersed specimens. The ESPI interferometer and numerical data analysis procedure presented herein provide reliable, accurate, and repeatable measurement of sub-micrometer deformations obtained from pressurization tests of spherically-shaped specimens immersed in aqueous salt solution. This method can be used to quantify small deformations in biological tissue samples under load, while maintaining the hydration necessary to ensure accurate material property assessment.

Journal ArticleDOI
TL;DR: This paper analyzes the dynamics of objective laser speckles as the distance between the object and the observation plane continuously changes, and designs a rotational symmetric spatial filter that converts the speckle dynamics into a photocurrent with a quasi-sinusoidal response to the out-of-plane motion.
Abstract: This paper analyzes the dynamics of objective laser speckles as the distance between the object and the observation plane continuously changes. With the purpose of applying optical spatial filtering velocimetry to the speckle dynamics, in order to measure out-of-plane motion in real time, a rotational symmetric spatial filter is designed. The spatial filter converts the speckle dynamics into a photocurrent with a quasi-sinusoidal response to the out-of-plane motion. The spatial filter is here emulated with a CCD camera, and is tested on speckles arising from a real application. The analysis discusses the selectivity of the spatial filter, the nonlinear response between speckle motion and observation distance, and the influence of the distance-dependent speckle size. Experiments with the emulated filters illustrate performance and potential applications of the technology.

Journal ArticleDOI
TL;DR: This work considers for the first time the application of white light interferometry with hyperspectral imaging to speckled wavefronts from optically rough surfaces and demonstrates a measurement repeatability of 460 nm for a bandwidth of approximately 30 nm.
Abstract: The combination of white light interferometry with hyperspectral imaging (“hyperspectral interferometry”) is a recently proposed technique for single-shot measurement of 3D surface profiles. We consider for the first time its application to speckled wavefronts from optically rough surfaces. The intensity versus wavenumber signal at each pixel provides unambiguous range information despite the speckle-induced random phase shifts. Experimental results with samples undergoing controlled rigid body translation demonstrate a measurement repeatability of 460 nm for a bandwidth of approximately 30 nm. Potential applications include roughness measurement and coordinate measurement machine probes where rapid data acquisition in noncooperative environments is essential.

Journal ArticleDOI
TL;DR: It is shown that speckle properties can be controlled by introducing different optical components, i.e., lenses and sections of free space, using a series of numerical simulations to examine how the correlation function changes for some typical LCT systems.
Abstract: The statistical properties of speckles in paraxial optical systems depend on the system parameters. In particular, the speckle orientation and the lateral dependence (x and y) of the longitudinal speckle size can vary significantly. For example, the off-axis longitudinal correlation length remains equal to the on-axis size for speckles in a Fourier transform system, while it decreases dramatically as the observation position moves off axis in a Fresnel system. In this paper, we review the speckle correlation function in general linear canonical transform (LCT) systems, clearly demonstrating that speckle properties can be controlled by introducing different optical components, i.e., lenses and sections of free space. Using a series of numerical simulations, we examine how the correlation function changes for some typical LCT systems. The integrating effect of the camera pixel and the impact this has on the measured first- and second-order statistics of the speckle intensities is also examined theoretically. A series of experimental results are then presented to confirm several of these predictions. First, the effect the pixel size has on the measured first-order speckle statistics is demonstrated, and second, the orientation of speckles in a Fourier transform system is measured, showing that the speckles lie parallel to the optical axis.

Journal ArticleDOI
TL;DR: By this novel method, distance measurements with an uncertainty down to 1.2 μm at about 10 m/s lateral moving velocity have been achieved and together with the simultaneously measured lateral velocity, the shape of rotating objects can be precisely determined.
Abstract: The precise measurement of the distance of fast laterally moving rough surfaces is important in several applications such as lathe monitoring. A nonincremental interferometer based on two tilted interference fringe systems and a precise phase-difference estimation has been realized for this task. However, due to the speckle effect, the two scattered light signals exhibit different phase jumps and random envelopes causing small correlation coefficients and high uncertainties of the phase difference as well as the distance. In this Letter we present for the first time a method to enhance the signal correlation coefficient significantly. The interference signals are generated by scattered light of a rough surface from two different directions. A matching of illumination and receiving optic is performed. By this novel method, distance measurements with an uncertainty down to 1.2 μm at about 10 m/s lateral moving velocity have been achieved. Together with the simultaneously measured lateral velocity, the shape of rotating objects can be precisely determined.

Journal ArticleDOI
TL;DR: A nonimaging approach to displacement measurement for complex scattering materials by spatially controlling the wavefront of the light that incidents on the material and combining two fingerprints demonstrates position detection along one in-plane dimension with a displacement resolution of 2.1 nm.
Abstract: We experimentally demonstrate a nonimaging approach to displacement measurement for complex scattering materials. By spatially controlling the wavefront of the light that incidents on the material, we concentrate the scattered light in a focus on a designated position. This wavefront acts as a unique optical fingerprint that enables precise position detection of the illuminated material by simply measuring the intensity in the focus. By combining two fingerprints we demonstrate position detection along one in-plane dimension with a displacement resolution of 2.1 nm. As our approach does not require an image of the scattered field, it is possible to employ fast nonimaging detectors to enable high-speed position detection of scattering materials.

Journal ArticleDOI
TL;DR: In this article, the authors used digital speckle pattern interference (DSPI) and decorrelation (DIC) techniques to trace the possible development of damage in the paint layer caused by relative humidity variations induced by the heating system.