scispace - formally typeset
Search or ask a question
Topic

Speckle imaging

About: Speckle imaging is a research topic. Over the lifetime, 3730 publications have been published within this topic receiving 62354 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, optical configurations for DSPI and DS with a double aperture mask in front of the imaging lens for spatial phase shifting are proposed for the measurement of out-of-plane displacement and its first order derivative (slope) respectively.
Abstract: Digital speckle pattern interferometry (DSPI) and digital shearography (DS) are well known optical tools for qualitative as well as quantitative measurements of displacement components and its derivatives of engineering structures subjected either static or dynamic load. Spatial phase shifting (SPS) technique is useful for extracting quantitative displacement data from the system with only two frames. Optical configurations for DSPI and DS with a double aperture mask in front of the imaging lens for spatial phase shifting are proposed in this paper for the measurement of out-of-plane displacement and its first order derivative (slope) respectively. An error compensating four-phase step algorithm is used for quantitative fringe analysis.

99 citations

Journal ArticleDOI
TL;DR: A method for increasing the resolution of an aperture limited optical system by illuminating the input with a speckle pattern that demodulates the high frequencies of the sample and permits its passage through the system aperture.
Abstract: We propose a method for increasing the resolution of an aperture limited optical system by illuminating the input with a speckle pattern. The high resolution of the projected speckle pattern demodulates the high frequencies of the sample and permits its passage through the system aperture. A decoding provides the superresolved image. The speckle pattern can be generated in a simple manner in contrast with other structured light superresolution methods. The method is demonstrated in microscopy test images.

99 citations

Journal ArticleDOI
TL;DR: An optimized 3D digital image correlation (3D-DIC) system using active optical imaging is developed for accurate shape and 3D deformation measurements in nonlaboratory conditions or extreme high-temperature environments using a combination of monochromatic lighting and bandpass filter imaging.
Abstract: An optimized 3D digital image correlation (3D-DIC) system using active optical imaging is developed for accurate shape and 3D deformation measurements in nonlaboratory conditions or extreme high-temperature environments. In contrast to a conventional 3D-DIC system using white or natural light illumination, the proposed active imaging 3D-DIC system is based on a combination of monochromatic lighting and bandpass filter imaging. Because the bandpass filter attached before the imaging lenses allows only the actively illuminated monochromatic light to pass through and blocks all light outside of its bandpass range, the active imaging 3D-DIC system is therefore insensitive to serious variations in ambient light in nonlaboratory environments and to the thermal radiation of hot objects in extreme high-temperature environments. Two challenging experiments that cannot be performed by a conventional 3D-DIC system were carried out to verify the robustness and accuracy of the developed active imaging 3D-DIC system. Because a much wider application range can be achieved with relatively simple and easy-to-implement improvements, the proposed active imaging 3D-DIC system is highly recommended for practical use instead of the conventional 3D-DIC system.

98 citations

Journal ArticleDOI
TL;DR: In this article, a fast readout mode was developed to take short exposures of stellar images corrected by adaptive optics at ground-based UCO/Lick Observatory, with integration times of 5 ms and a time between successive frames of 14.5 ms (λ = 2.2 μm).
Abstract: Imaging observations are generally affected by a fluctuating background of speckles, a particular problem when detecting faint stellar companions at small angular separations. These speckles can be created by both short-lived atmospheric aberrations and slowly changing distortions in the optical system. Over the course of a long-exposure image, the combination of many independent realizations of speckle patterns forms a halo in the point-spread function (PSF) of characteristic scale Δθ ~ λ/r0 (where r0 is the coherence length in the pupil). While adaptive optics can increase the achievable image contrast, speckle noise remains a major source of random error, which decreases the sensitivity of companion detection observations near the diffraction limit. Knowing the distribution of the speckle intensities at a given location in the image plane is therefore important for understanding the noise limits of companion detection. The speckle noise limit in a long-exposure image is characterized by the intensity variance and the speckle lifetime. In this paper we address the former quantity through the distribution function of speckle intensity. Previous theoretical work has predicted a form for this distribution function at a single location in the image plane. We developed a fast readout mode to take short exposures of stellar images corrected by adaptive optics at the ground-based UCO/Lick Observatory, with integration times of 5 ms and a time between successive frames of 14.5 ms (λ = 2.2 μm). These observations temporally oversample and spatially Nyquist sample the observed speckle patterns. We show, for various locations in the image plane, that the observed distribution of speckle intensities is consistent with the predicted form. In addition, we demonstrate a method by which Ic and Is can be mapped over the image plane. As the quantity Ic is proportional to the PSF of the telescope free of random atmospheric aberrations, this method can be used for PSF calibration and reconstruction.

98 citations

Journal ArticleDOI
TL;DR: This Letter shows that the same level of deep tissue flow information can be obtained from a much simpler analysis on the spatial distribution of the speckles that is obtained by a CCD camera, which is named diffuse speckle contrast analysis (DSCA).
Abstract: Diffuse correlation spectroscopy (DCS) is an emerging modality for noninvasive deep tissue blood flow monitoring that is becoming increasingly popular; it conducts an autocorrelation analysis of fast fluctuating photon count signals from a single speckle. In this Letter, we show that the same level of deep tissue flow information can be obtained from a much simpler analysis on the spatial distribution of the speckles that is obtained by a CCD camera, which we named diffuse speckle contrast analysis (DSCA). Both the flow phantom experiment and in vivo cuff occlusion data are presented. DSCA can be considered a new optical modality that combines DCS and laser speckle contrast imaging (LSCI), which exploits simple instrumentation and analysis and yet is sensitive to deep tissue flow.

98 citations


Network Information
Related Topics (5)
Interferometry
58K papers, 824.8K citations
88% related
Optical fiber
167K papers, 1.8M citations
82% related
Polarization (waves)
65.3K papers, 984.7K citations
81% related
Light scattering
37.7K papers, 861.5K citations
80% related
Emission spectrum
36.9K papers, 878.7K citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202332
202249
202162
202079
201972
201895