scispace - formally typeset
Search or ask a question
Topic

Speckle imaging

About: Speckle imaging is a research topic. Over the lifetime, 3730 publications have been published within this topic receiving 62354 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This system, based on a Linnik-type interference microscope, illuminated by a white-light thermal lamp, has the highest resolution demonstrated to date for OCT imaging and realistic volume rendering of structures inside biological tissues is possible.
Abstract: We have built a high-resolution optical coherence tomography (OCT) system, based on a Linnik-type interference microscope, illuminated by a white-light thermal lamp. The extremely short coherence length of the illumination source and the large aperture of the objectives permit resolution close to 1 µm in three dimensions. A parallel detection scheme with a CCD camera provides cross-section x–y image acquisition without scanning at a rate of up to 50 Hz. To our knowledge, our system has the highest resolution demonstrated to date for OCT imaging. With identical resolution in three dimensions, realistic volume rendering of structures inside biological tissues is possible.

409 citations

Journal ArticleDOI
TL;DR: In this paper, the mass and distance of the galaxy's central supermassive black hole Sgr A^* were estimated by using the kinematic measurements from speckle holography and adaptive optics.
Abstract: We present new, more precise measurements of the mass and distance of our Galaxy's central supermassive black hole, Sgr A^*. These results stem from a new analysis that more than doubles the time baseline for astrometry of faint stars orbiting Sgr A^*, combining 2 decades of speckle imaging and adaptive optics data. Specifically, we improve our analysis of the speckle images by using information about a star's orbit from the deep adaptive optics data (2005–2013) to inform the search for the star in the speckle years (1995–2005). When this new analysis technique is combined with the first complete re-reduction of Keck Galactic Center speckle images using speckle holography, we are able to track the short-period star S0-38 (K-band magnitude = 17, orbital period = 19 yr) through the speckle years. We use the kinematic measurements from speckle holography and adaptive optics to estimate the orbits of S0-38 and S0-2 and thereby improve our constraints of the mass (M_(bh)) and distance (R_o) of Sgr A^*: M_(bh) = (4.02 ± 0.16 ± 0.04) × 10^6 M_⊙ and 7.86 ± 0.14 ± 0.04 kpc. The uncertainties in M_(bh) and R_o as determined by the combined orbital fit of S0-2 and S0-38 are improved by a factor of 2 and 2.5, respectively, compared to an orbital fit of S0-2 alone and a factor of ~2.5 compared to previous results from stellar orbits. This analysis also limits the extended dark mass within 0.01 pc to less than 0.13 × 10^6 M_⊙ at 99.7% confidence, a factor of 3 lower compared to prior work.

396 citations

Journal ArticleDOI
TL;DR: In this article, a simple method (speckle masking) for the reconstruction of real images from astronomical speckle photographs is described, which is applicable to a restricted class of objects that includes double stars.

334 citations

Journal ArticleDOI
TL;DR: In this article, the first results from a speckle imaging survey of stars classified as candidate exoplanet host stars discovered by the Kepler mission were presented, where the authors used speckles to search for faint companions or closely aligned background stars that could contribute flux to the Kepler light curves of their brighter neighbors.
Abstract: We present the first results from a speckle imaging survey of stars classified as candidate exoplanet host stars discovered by the Kepler mission. We use speckle imaging to search for faint companions or closely aligned background stars that could contribute flux to the Kepler light curves of their brighter neighbors. Background stars are expected to contribute significantly to the pool of false positive candidate transiting exoplanets discovered by the Kepler mission, especially in the case that the faint neighbors are eclipsing binary stars. Here, we describe our Kepler follow-up observing program, the speckle imaging camera used, our data reduction, and astrometric and photometric performance. Kepler stars range from R = 8 to 16 and our observations attempt to provide background non-detection limits 5-6 mag fainter and binary separations of ~0.05-2.0 arcsec. We present data describing the relative brightness, separation, and position angles for secondary sources, as well as relative plate limits for non-detection of faint nearby stars around each of 156 target stars. Faint neighbors were found near 10 of the stars.

327 citations

Journal ArticleDOI
TL;DR: Speckle statistics that are appropriate to the OCT measurements are developed and a simple and practical speckle-reduction technique is demonstrated.
Abstract: Studies have shown that optical coherence tomography (OCT) is useful in imaging microscopic structures through highly scattering media. Because spatially coherent light is used in OCT, speckle in the reconstructed image is unavoidable, resulting in degradation of the quality of the OCT images and impaired ability to differentiate subsurface structures. Therefore speckle reduction is an important issue in OCT imaging. We develop speckle statistics that are appropriate to the OCT measurements and demonstrate a simple and practical speckle-reduction technique.

316 citations


Network Information
Related Topics (5)
Interferometry
58K papers, 824.8K citations
88% related
Optical fiber
167K papers, 1.8M citations
82% related
Polarization (waves)
65.3K papers, 984.7K citations
81% related
Light scattering
37.7K papers, 861.5K citations
80% related
Emission spectrum
36.9K papers, 878.7K citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202332
202249
202162
202079
201972
201895