scispace - formally typeset
Search or ask a question

Showing papers on "Spectral efficiency published in 2015"


Journal ArticleDOI
TL;DR: The concept of software defined multiple access (SoDeMA) is proposed, which enables adaptive configuration of available multiple access schemes to support diverse services and applications in future 5G networks.
Abstract: The increasing demand of mobile Internet and the Internet of Things poses challenging requirements for 5G wireless communications, such as high spectral efficiency and massive connectivity. In this article, a promising technology, non-orthogonal multiple access (NOMA), is discussed, which can address some of these challenges for 5G. Different from conventional orthogonal multiple access technologies, NOMA can accommodate much more users via nonorthogonal resource allocation. We divide existing dominant NOMA schemes into two categories: power-domain multiplexing and code-domain multiplexing, and the corresponding schemes include power-domain NOMA, multiple access with low-density spreading, sparse code multiple access, multi-user shared access, pattern division multiple access, and so on. We discuss their principles, key features, and pros/cons, and then provide a comprehensive comparison of these solutions from the perspective of spectral efficiency, system performance, receiver complexity, and so on. In addition, challenges, opportunities, and future research trends for NOMA design are highlighted to provide some insight on the potential future work for researchers in this field. Finally, to leverage different multiple access schemes including both conventional OMA and new NOMA, we propose the concept of software defined multiple access (SoDeMA), which enables adaptive configuration of available multiple access schemes to support diverse services and applications in future 5G networks.

2,512 citations


Journal ArticleDOI
TL;DR: A reference signal design for the hybrid beamform structure is presented, which achieves better channel estimation performance than the method solely based on analog beamforming, and can be conveniently utilized to guide practical LSAS design for optimal energy/ spectrum efficiency trade-off.
Abstract: With the severe spectrum shortage in conventional cellular bands, large-scale antenna systems in the mmWave bands can potentially help to meet the anticipated demands of mobile traffic in the 5G era. There are many challenging issues, however, regarding the implementation of digital beamforming in large-scale antenna systems: complexity, energy consumption, and cost. In a practical large-scale antenna deployment, hybrid analog and digital beamforming structures can be important alternative choices. In this article, optimal designs of hybrid beamforming structures are investigated, with the focus on an N (the number of transceivers) by M (the number of active antennas per transceiver) hybrid beamforming structure. Optimal analog and digital beamforming designs in a multi-user beamforming scenario are discussed. Also, the energy efficiency and spectrum efficiency of the N × M beamforming structure are analyzed, including their relationship at the green point (i.e., the point with the highest energy efficiency) on the energy efficiency-spectrum efficiency curve, the impact of N on the energy efficiency performance at a given spectrum efficiency value, and the impact of N on the green point energy efficiency. These results can be conveniently utilized to guide practical LSAS design for optimal energy/ spectrum efficiency trade-off. Finally, a reference signal design for the hybrid beamform structure is presented, which achieves better channel estimation performance than the method solely based on analog beamforming. It is expected that large-scale antenna systems with hybrid beamforming structures in the mmWave band can play an important role in 5G.

1,129 citations


Journal ArticleDOI
TL;DR: It is shown that numerous open challenges, such as efficient SI suppression, high-performance FD MAC-layer protocol design, low power consumption, and hybrid FD/HD designs, have to be tackled before successfully implementing FD-based systems.
Abstract: The wireless research community aspires to conceive full duplex operation by supporting concurrent transmission and reception in a single time/frequency channel for the sake of improving the attainable spectral efficiency by a factor of two as compared to the family of conventional half duplex wireless systems. The main challenge encountered in implementing FD wireless devices is that of finding techniques for mitigating the performance degradation imposed by self-interference. In this article, we investigate the potential FD techniques, including passive suppression, active analog cancellation, and active digital cancellation, and highlight their pros and cons. Furthermore, the troubles of FD medium access control protocol design are discussed for addressing the problems such as the resultant end-to-end delay and network congestion. Additionally, an opportunistic decode-andforward- based relay selection scheme is analyzed in underlay cognitive networks communicating over independent and identically distributed Rayleigh and Nakagami-m fading channels in the context of FD relaying. We demonstrate that the outage probability of multi-relay cooperative communication links can be substantially reduced. Finally, we discuss the challenges imposed by the aforementioned techniques and a range of critical issues associated with practical FD implementations. It is shown that numerous open challenges, such as efficient SI suppression, high-performance FD MAC-layer protocol design, low power consumption, and hybrid FD/HD designs, have to be tackled before successfully implementing FD-based systems.

646 citations


Posted Content
TL;DR: Numerical results show that architectures based on switches obtain equal or better channel estimation performance to that obtained using phase shifters, while reducing hardware complexity and power consumption, and all the hybrid architectures provide similar spectral efficiencies.
Abstract: Hybrid analog/digital MIMO architectures were recently proposed as an alternative for fully-digitalprecoding in millimeter wave (mmWave) wireless communication systems. This is motivated by the possible reduction in the number of RF chains and analog-to-digital converters. In these architectures, the analog processing network is usually based on variable phase shifters. In this paper, we propose hybrid architectures based on switching networks to reduce the complexity and the power consumption of the structures based on phase shifters. We define a power consumption model and use it to evaluate the energy efficiency of both structures. To estimate the complete MIMO channel, we propose an open loop compressive channel estimation technique which is independent of the hardware used in the analog processing stage. We analyze the performance of the new estimation algorithm for hybrid architectures based on phase shifters and switches. Using the estimated, we develop two algorithms for the design of the hybrid combiner based on switches and analyze the achieved spectral efficiency. Finally, we study the trade-offs between power consumption, hardware complexity, and spectral efficiency for hybrid architectures based on phase shifting networks and switching networks. Numerical results show that architectures based on switches obtain equal or better channel estimation performance to that obtained using phase shifters, while reducing hardware complexity and power consumption. For equal power consumption, all the hybrid architectures provide similar spectral efficiencies.

526 citations


Journal ArticleDOI
TL;DR: In this paper, the potential gains and limitations of network densification and spectral efficiency enhancement techniques in ultra-dense small cell deployments are analyzed. And the top ten challenges to be addressed to bring ultra dense small-cell deployments to reality are discussed.
Abstract: Today's heterogeneous networks comprised of mostly macrocells and indoor small cells will not be able to meet the upcoming traffic demands. Indeed, it is forecasted that at least a $100\times$ network capacity increase will be required to meet the traffic demands in 2020. As a result, vendors and operators are now looking at using every tool at hand to improve network capacity. In this epic campaign, three paradigms are noteworthy, i.e., network densification, the use of higher frequency bands and spectral efficiency enhancement techniques. This paper aims at bringing further common understanding and analysing the potential gains and limitations of these three paradigms, together with the impact of idle mode capabilities at the small cells as well as the user equipment density and distribution in outdoor scenarios. Special attention is paid to network densification and its implications when transiting to ultra-dense small cell deployments. Simulation results show that comparing to the baseline case with an average inter site distance of 200 m and a 100 MHz bandwidth, network densification with an average inter site distance of 35 m can increase the average UE throughput by $7.56\times$ , while the use of the 10 GHz band with a 500 MHz bandwidth can further increase the network capacity up to $5\times$ , resulting in an average of 1.27 Gbps per UE. The use of beamforming with up to 4 antennas per small cell BS lacks behind with average throughput gains around 30% and cell-edge throughput gains of up to $2\times$ . Considering an extreme densification, an average inter site distance of 5 m can increase the average and cell-edge UE throughput by $18\times$ and $48\times$ , respectively. Our study also shows how network densification reduces multi-user diversity, and thus proportional fair alike schedulers start losing their advantages with respect to round robin ones. The energy efficiency of these ultra-dense small cell deployments is also analysed, indicating the benefits of energy harvesting approaches to make these deployments more energy-efficient. Finally, the top ten challenges to be addressed to bring ultra-dense small cell deployments to reality are also discussed.

515 citations


Journal ArticleDOI
TL;DR: A general and tractable mmWave cellular model capturing these key trends and characterize the associated rate distribution is proposed and shows that, in sharp contrast to the interference-limited nature of UHF cellular networks, the spectral efficiency of mmWave networks also increases with the BS density, particularly at the cell edge.
Abstract: Millimeter wave (mmWave) cellular systems will require high-gain directional antennas and dense base station (BS) deployments to overcome a high near-field path loss and poor diffraction. As a desirable side effect, high-gain antennas offer interference isolation, providing an opportunity to incorporate self-backhauling , i.e., BSs backhauling among themselves in a mesh architecture without significant loss in the throughput, to enable the requisite large BS densities. The use of directional antennas and resource sharing between access and backhaul links leads to coverage and rate trends that significantly differ from conventional UHF cellular systems. In this paper, we propose a general and tractable mmWave cellular model capturing these key trends and characterize the associated rate distribution. The developed model and analysis are validated using actual building locations from dense urban settings and empirically derived path loss models. The analysis shows that, in sharp contrast to the interference-limited nature of UHF cellular networks, the spectral efficiency of mmWave networks (besides the total rate) also increases with the BS density, particularly at the cell edge. Increasing the system bandwidth does not significantly influence the cell edge rate, although it boosts the median and peak rates. With self-backhauling, different combinations of the wired backhaul fraction (i.e., the fraction of BSs with a wired connection) and the BS density are shown to guarantee the same median rate (QoS).

514 citations


Journal ArticleDOI
TL;DR: This letter proposes both optimal and low complexity suboptimal power allocation schemes to maximize the ergodic capacity of MIMO NOMA system with total transmit power constraint and minimum rate constraint of the weak user.
Abstract: Non-orthogonal multiple access (NOMA) is expected to be a promising multiple access technique for 5G networks due to its superior spectral efficiency. In this letter, the ergodic capacity maximization problem is first studied for the Rayleigh fading multiple-input multiple-output (MIMO) NOMA systems with statistical channel state information at the transmitter (CSIT). We propose both optimal and low complexity suboptimal power allocation schemes to maximize the ergodic capacity of MIMO NOMA system with total transmit power constraint and minimum rate constraint of the weak user. Numerical results show that the proposed NOMA schemes significantly outperform the traditional orthogonal multiple access scheme.

439 citations


Journal ArticleDOI
TL;DR: The achievable average rate of the proposed cooperative relaying system using non-orthogonal multiple access (NOMA) to improve the spectral efficiency is analyzed for independent Rayleigh fading channels, and its asymptotic expression is provided.
Abstract: In this letter, we propose the cooperative relaying system using non-orthogonal multiple access (NOMA) to improve the spectral efficiency. The achievable average rate of the proposed system is analyzed for independent Rayleigh fading channels, and also its asymptotic expression is provided. In addition, a suboptimal power allocation scheme for NOMA used at the source is proposed.

378 citations


Journal ArticleDOI
TL;DR: In this paper, the authors proposed a digital self-interference cancellation technique for full-duplex systems, which is shown to significantly mitigate the selfinterference signal as well as the associated transmitter and receiver impairments, more specifically, transceiver nonlinearities and phase noise.
Abstract: Full-duplex systems are expected to double the spectral efficiency compared to conventional half-duplex systems if the self-interference signal can be significantly mitigated. Digital cancellation is one of the lowest complexity self-interference cancellation techniques in full-duplex systems. However, its mitigation capability is very limited, mainly due to transmitter and receiver circuit's impairments (e.g., phase noise, nonlinear distortion, and quantization noise). In this paper, we propose a novel digital self-interference cancellation technique for full-duplex systems. The proposed technique is shown to significantly mitigate the self-interference signal as well as the associated transmitter and receiver impairments, more specifically, transceiver nonlinearities and phase noise. In the proposed technique, an auxiliary receiver chain is used to obtain a digital-domain copy of the transmitted Radio Frequency (RF) self-interference signal. The self-interference copy is then used in the digital-domain to cancel out both the self-interference signal and the associated transmitter impairments. Furthermore, to alleviate the receiver phase noise effect, a common oscillator is shared between the auxiliary and ordinary receiver chains. A thorough analytical and numerical analysis for the effect of the transmitter and receiver impairments on the cancellation capability of the proposed technique is presented. Finally, the overall performance is numerically investigated showing that using the proposed technique, the self-interference signal could be mitigated to $\sim$ 3 dB higher than the receiver noise floor, which results in up to 76% rate improvement compared to conventional half-duplex systems at 20 dBm transmit power values.

343 citations


Posted Content
TL;DR: In this paper, a DVB-S2 low-density parity-check (LDPC) codes were used for bipolar amplitude shift keying (ASK) constellations with equidistant signal points.
Abstract: A new coded modulation scheme is proposed. At the transmitter, the concatenation of a distribution matcher and a systematic binary encoder performs probabilistic signal shaping and channel coding. At the receiver, the output of a bitwise demapper is fed to a binary decoder. No iterative demapping is performed. Rate adaption is achieved by adjusting the input distribution and the transmission power. The scheme is applied to bipolar amplitude shift keying (ASK) constellations with equidistant signal points and it is directly applicable to two-dimensional quadrature amplitude modulation (QAM). The scheme is implemented by using the DVB-S2 low-density parity-check (LDPC) codes. At a frame error rate of 1e-3, the new scheme operates within less than 1 dB of the AWGN capacity 0.5log2(1+SNR) at any spectral efficiency between 1 and 5 bits/s/Hz by using only 5 modes, i.e., 4-ASK with code rate 2/3, 8-ASK with 3/4, 16-ASK and 32-ASK with 5/6 and 64-ASK with 9/10.

322 citations


Journal ArticleDOI
TL;DR: New tradeoffs in designing full duplex enabled radio networks are identified, and new scheduling algorithms and advanced interference cancellation techniques are discussed, which are essential to maximize the capacity gain and energy efficiency.
Abstract: Recent advances in antenna and RF circuit design have greatly reduced the crosstalk between the transmitter and receiver circuits on a wireless device, which enable radios to transmit and receive on the same frequency at the same time. Such a full duplex radio has the potential to double the spectral efficiency of a point-to-point radio link. However, the application of such a radio in current cellular systems (3GPP LTE) has not been comprehensively analyzed. This article addresses the fundamental challenges in incorporating full duplex radios in a cellular network to unlock the full potential of full duplex communications. We observe that without carefully planning, full duplex transmission might cause much higher interference in both uplink and downlink, which greatly limits the potential gains. Another challenge is that standard scheduling methods which attempt to achieve the maximum capacity gain lead to a severe loss in energy efficiency. In this article, we identify new tradeoffs in designing full duplex enabled radio networks, and discuss favorable conditions to operate in full duplex mode. New scheduling algorithms and advanced interference cancellation techniques are discussed, which are essential to maximize the capacity gain and energy efficiency. Under this new design, most of the gain is achievable with full duplex enabled base stations, while user equipment still operates in half duplex mode.

Journal ArticleDOI
Li You1, Xiqi Gao1, Xiang-Gen Xia2, Ni Ma3, Yan Peng3 
TL;DR: Simulation results show that the proposed pilot reuse in single cell for massive multiuser multiple-input multiple-output (MIMO) transmission to reduce the pilot overhead provides significant performance gains over the conventional orthogonal training scheme in terms of net spectral efficiency.
Abstract: We propose pilot reuse (PR) in single cell for massive multiuser multiple-input multiple-output (MIMO) transmission to reduce the pilot overhead. For spatially correlated Rayleigh fading channels, we establish a relationship between channel spatial correlations and channel power angle spectrum when the base station antenna number tends to infinity. With this channel model, we show that sum mean square error (MSE) of channel estimation can be minimized provided that channel angle of arrival intervals of the user terminals reusing the pilots are non-overlapping, which shows feasibility of PR over spatially correlated massive MIMO channels with constrained channel angular spreads. Regarding that channel estimation performance might degrade due to PR, we also develop the closed-form robust multiuser uplink receiver and downlink precoder that minimize sum MSE of signal detection, and reveal a duality between them. Subsequently, we investigate pilot scheduling, which determines the PR pattern, under two minimum MSE related criteria, and propose a low complexity pilot scheduling algorithm which relies on the channel statistics only. Simulation results show that the proposed PR scheme provides significant performance gains over the conventional orthogonal training scheme in terms of net spectral efficiency.

Journal ArticleDOI
TL;DR: Novel state-of-the-art antenna solutions as well as digital self-interference cancellation algorithms for compact MIMO full-duplex relays, specifically targeted for reduced-cost deployments in local area networks are presented.
Abstract: In-band full-duplex relays transmit and receive simultaneously at the same center frequency, hence offering enhanced spectral efficiency for relay deployment. In order to deploy such full-duplex relays, it is necessary to efficiently mitigate the inherent self-interference stemming from the strong transmit signal coupling to the sensitive receive chain. In this article, we present novel state-of-the-art antenna solutions as well as digital self-interference cancellation algorithms for compact MIMO fullduplex relays, specifically targeted for reduced-cost deployments in local area networks. The presented antenna design builds on resonant wavetraps and is shown to provide passive isolations on the order of 60–70 dB. We also discuss and present advanced digital cancellation solutions, beyond classical linear processing, specifically tailored against nonlinear distortion of the power amplifier when operating close to saturation. Measured results from a complete demonstrator system, integrating antennas, RF cancellation, and nonlinear digital cancellation, are also presented, evidencing close to 100 dB of overall self-interference suppression. The reported results indicate that building and deploying compact full-duplex MIMO relays is already technologically feasible.

Journal ArticleDOI
TL;DR: Computer simulation results clearly show the proposed generalization scheme of OFDM-IM with generalized index modulation's superiority in both spectral efficiency and BER performance compared to existing works.
Abstract: Recently, orthogonal frequency division multiplexing (OFDM) with index modulation (OFDM-IM) was proposed. By selecting a fixed number of subcarriers as active subcarriers to carry constellation symbols, the indices of these active subcarriers may carry additional bits of information. In this paper, we propose two generalization schemes of OFDM-IM, named OFDM with generalized index modulation 1 (OFDM-GIM1) and OFDM-GIM2, respectively. In OFDM-GIM1, the number of active subcarriers in an OFDM subblock is no longer fixed. Dependent on the input binary string, different numbers of active subcarriers are assigned to carry constellation symbols. In OFDM-GIM2, independent index modulation is performed on the in-phase and quadrature component per subcarrier. Through such ways, a higher spectral efficiency than that of OFDM-IM may be achieved. Since both generalization schemes proposed suffer from BER performance loss in low SNR region, an interleaving technique is proposed to tackle this problem. Finally, noting that the two generalization schemes are compatible with each other, the combination of these two schemes, named OFDM-GIM3, has also been investigated. Computer simulation results clearly show our proposed scheme's superiority in both spectral efficiency and BER performance compared to existing works.

Journal ArticleDOI
Li You1, Xiqi Gao1, Xiang-Gen Xia2, Ni Ma3, Yan Peng3 
TL;DR: In this paper, the authors proposed a pilot reuse (PR) in single cell for massive multiuser multiple-input multiple-output (MIMO) transmission to reduce the pilot overhead.
Abstract: We propose pilot reuse (PR) in single cell for massive multiuser multiple-input multiple-output (MIMO) transmission to reduce the pilot overhead. For spatially correlated Rayleigh fading channels, we establish a relationship between channel spatial correlations and channel power angle spectrum when the base station antenna number tends to infinity. With this channel model, we show that sum mean square error (MSE) of channel estimation can be minimized provided that channel angle of arrival intervals of the user terminals reusing the pilots are non-overlapping, which shows feasibility of PR over spatially correlated massive MIMO channels with constrained channel angular spreads. Since channel estimation performance might degrade due to PR, we also develop the closed-form robust multiuser uplink receiver and downlink precoder that minimize sum MSE of signal detection, and reveal a duality between them. Subsequently, we investigate pilot scheduling, which determines the PR pattern, under two minimum MSE related criteria, and propose a low complexity pilot scheduling algorithm, which relies on the channel statistics only. Simulation results show that the proposed PR scheme provides significant performance gains over the conventional orthogonal training scheme in terms of net spectral efficiency.

Journal ArticleDOI
TL;DR: This paper addresses the problem of energy-efficient resource allocation in the downlink of a cellular orthogonal frequency division multiple access system and shows that the maximization of the energy efficiency is approximately equivalent to the maximizations of the spectral efficiency for small values of the maximum transmit power.
Abstract: This paper addresses the problem of energy-efficient resource allocation in the downlink of a cellular orthogonal frequency division multiple access system. Three definitions of energy efficiency are considered for system design, accounting for both the radiated and the circuit power. User scheduling and power allocation are optimized across a cluster of coordinated base stations with a constraint on the maximum transmit power (either per subcarrier or per base station). The asymptotic noise-limited regime is discussed as a special case. Results show that the maximization of the energy efficiency is approximately equivalent to the maximization of the spectral efficiency for small values of the maximum transmit power, while there is a wide range of values of the maximum transmit power for which a moderate reduction of the data rate provides large savings in terms of dissipated energy. In addition, the performance gap among the considered resource allocation strategies is reduced as the out-of-cluster interference increases.

Journal ArticleDOI
TL;DR: New spatial spectrum and energy efficiency models for Poisson-Voronoi tessellation (PVT) random cellular networks and a Markov chain based wireless channel access model are proposed and analyzed.
Abstract: It is a great challenge to evaluate the network performance of cellular mobile communication systems. In this paper, we propose new spatial spectrum and energy efficiency models for Poisson-Voronoi tessellation (PVT) random cellular networks. To evaluate the user access to the network, a Markov chain based wireless channel access model is first proposed for PVT random cellular networks. On that basis, the outage probability and blocking probability of PVT random cellular networks are derived, which can be computed numerically. Furthermore, taking into account the call arrival rate, the path loss exponent and the base station (BS) density in random cellular networks, spatial spectrum and energy efficiency models are proposed and analyzed for PVT random cellular networks. Numerical simulations are conducted to evaluate the network spectrum and energy efficiency in PVT random cellular networks.

Journal ArticleDOI
TL;DR: This article reviews an emerging wireless information and power transfer (WIPT) technique with an emphasis on its performance enhancement employing multi-antenna techniques and investigates the WIPT tradeoffs based on two typical multi- Antenna techniques: the limited feedback multi-Antenna technique for short-distance transfer; and the large-scale multiple-input multiple-output (LS-MIMO) technique for long- distance transfer.
Abstract: This article reviews an emerging wireless information and power transfer (WIPT) technique with an emphasis on its performance enhancement employing multi-antenna techniques. Compared to traditional wireless information transmission, WIPT faces numerous challenges. First, it is more susceptible to channel fading and path loss, resulting in a much shorter power transfer distance. Second, it gives rise to the issue of how to balance spectral efficiency for information transmission and energy efficiency for power transfer in order to obtain an optimal tradeoff. Third, there exists a security issue for information transmission in order to improve power transfer efficiency. In this context, multi-antenna techniques, e.g. energy beamforming, are introduced to solve these problems by exploiting spatial degree of freedom. This article provides a tutorial on various aspects of multi-antenna based WIPT techniques, with a focus on tackling the challenges by parameter optimization and protocol design. In particular, we investigate the WIPT tradeoffs based on two typical multi-antenna techniques: the limited feedback multi-antenna technique for short-distance transfer; and the large-scale multiple-input multiple-output (LS-MIMO, also known as massive MIMO) technique for long-distance transfer. Finally, simulation results validate the effectiveness of the proposed schemes.

Journal ArticleDOI
TL;DR: A differential SM scheme that completely bypasses any CSI at the transmitter or receiver, while preserving the single active transmit antenna property, is developed and can be applied to any constant energy constellation such as phase-shift keying and to systems with arbitrary numbers of transmit and receive antennas.
Abstract: Spatial modulation (SM) is a newly emerging multiple-input–multiple-output technique that activates only a single antenna for transmission at any time instant and uses the index of the active antenna as an additional information-carrying mechanism. However, by its nature, SM decoding is coherent in that channel state information (CSI) is required at the receiver. In fact, coherent SM decoding can be very complex due to the heavily entangled channel estimation and symbol detection. In this correspondence, a differential SM scheme that completely bypasses any CSI at the transmitter or receiver, while preserving the single active transmit antenna property, is developed. The proposed scheme can be applied to any constant energy constellation such as phase-shift keying (PSK) and to systems with arbitrary numbers of transmit and receive antennas. Simulation results are presented under various system configurations. With the same spectral efficiency, the proposed scheme is capable of paying no more than 3 dB of signal-to-noise ratio penalty compared with coherent SM and outperforming the single-antenna differential PSK and differential space–time coding schemes.

Journal ArticleDOI
TL;DR: Simulation results demonstrate that, the VLC system advocated is capable of providing a high Area Spectral Efficiency (ASE) and the hybrid RF/VLC system achieves the highest throughput and the highest grade of fairness in most of the scenarios considered.
Abstract: As a complementary extension of established Radio Frequency (RF) Wireless Local Area Networks (WLANs), Visible Light Communication (VLC) using commercially available Light-Emitting Diode (LED) transmitters offers a huge data rate potential in this license-free spectral domain, whilst simultaneously satisfying energy-efficient illumination demands. Various VLC cell formations, ranging from a regular cell-layout associated with different Frequency Reuse (FR) patterns to merged cells by employing advanced transmission scheme are investigated. Furthermore, a hybrid Down-Link (DL) offering full RF-coverage by a WLAN and additionally supported by the abundant spectral resources of a VLC network is studied. Cooperative Load Balancing (LB) achieving Proportional Fairness (PF) is implemented by using both centralized and distributed resource-allocation algorithms. The performance of this hybrid RF/VLC system is analysed both in terms of its throughput and fairness in diverse cell formation scenarios. Our simulation results demonstrate that, the VLC system advocated is capable of providing a high Area Spectral Efficiency (ASE) and our hybrid RF/VLC system achieves the highest throughput and the highest grade of fairness in most of the scenarios considered.

Journal ArticleDOI
TL;DR: In this article, a frame-based precoding problem is optimally solved using the principles of physical layer multicasting to multiple co-channel groups under per-antenna constraints, and a novel optimization problem that aims at maximizing the system sum rate under individual power constraints is proposed.
Abstract: The present work focuses on the forward link of a broadband multibeam satellite system that aggressively reuses the user link frequency resources. Two fundamental practical challenges, namely the need to frame multiple users per transmission and the per-antenna transmit power limitations, are addressed. To this end, the so-called frame-based precoding problem is optimally solved using the principles of physical layer multicasting to multiple co-channel groups under per-antenna constraints. In this context, a novel optimization problem that aims at maximizing the system sum rate under individual power constraints is proposed. Added to that, the formulation is further extended to include availability constraints. As a result, the high gains of the sum rate optimal design are traded off to satisfy the stringent availability requirements of satellite systems. Moreover, the throughput maximization with a granular spectral efficiency versus SINR function, is formulated and solved. Finally, a multicast-aware user scheduling policy, based on the channel state information, is developed. Thus, substantial multiuser diversity gains are gleaned. Numerical results over a realistic simulation environment exhibit as much as 30% gains over conventional systems, even for 7 users per frame, without modifying the framing structure of legacy communication standards.

Journal ArticleDOI
TL;DR: Theoretical analysis shows that the proposed scheme can improve the spectral efficiency by up to 2 times compared with conventional ACO-OFDM approaches with the same modulation order, and simulation results confirm a considerable signal-to-noise ratio gain over ACO -OFDM at the same spectral efficiency.
Abstract: Layered asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) with high spectral efficiency is proposed in this paper for optical wireless transmission employing intensity modulation with direct detection In contrast to the conventional ACO-OFDM, which only utilizes odd subcarriers for modulation, leading to an obvious spectral efficiency loss, in layered ACO-OFDM, the subcarriers are divided into different layers and modulated by different kinds of ACO-OFDM, which are combined for simultaneous transmission In this way, more subcarriers are used for data transmission and the spectral efficiency is improved An iterative receiver is also proposed for layered ACO-OFDM, where the negative clipping distortion of each layer is subtracted once it is detected so that the signals from different layers can be recovered Theoretical analysis shows that the proposed scheme can improve the spectral efficiency by up to 2 times compared with conventional ACO-OFDM approaches with the same modulation order Meanwhile, simulation results confirm a considerable signal-to-noise ratio gain over ACO-OFDM at the same spectral efficiency

Journal ArticleDOI
TL;DR: The potential open issues for underlay HetNets to improve SE and EE when combining with energy harvesting and cloud computing are outlined.
Abstract: By deploying additional low power nodes (LPNs) within the coverage area of traditional high power nodes (HPNs) and bringing them closer to users, underlay heterogeneous networks (HetNets) can significantly boost the overall spectral efficiency (SE) and energy efficiency (EE) through a full spatial resource reuse. Considering that the severe intra-tier interference among dense LPNs and inter-tier interference between LPNs and HPNs are challenging the successful rollout and commercial operations of underlay HetNets, a great emphasis is given towards advanced techniques that take interference control, radio resource allocation, and self-organization into account to enhance both SE and EE in this paper. The interference control techniques presented in this paper are classified as the spatial interference coordination at the transmitter and the interference cancelation at the receiver. For the radio resource allocation, the multi-dimensional optimization, cross-layer optimization, and cooperative radio resource management are comprehensively summarized. The self-configuration, self-optimization, and self-healing techniques for the self-organized underlay HetNets are surveyed. Furthermore, this paper outlines the potential open issues for underlay HetNets to improve SE and EE when combining with energy harvesting and cloud computing.

Journal ArticleDOI
TL;DR: In this article, the authors provided a foundation for HDHNs, composed of multi-tier networks with a mixture of APs, operating either in bidirectional FD mode or downlink HD mode.
Abstract: Full-duplex (FD) radio has been introduced for bidirectional communications on the same temporal and spectral resources so as to maximize spectral efficiency. In this paper, motivated by the recent advances in FD radios, we provide a foundation for HDHNs, composed of multi-tier networks with a mixture of APs, operating either in bidirectional FD mode or downlink HD mode. Specifically, we characterize the network interference from FD-mode cells, and derive the HDHN throughput by accounting for AP spatial density, self-IC capability, and transmission power of APs and users. By quantifying the HDHN throughput, we present the effect of network parameters and the self-interference cancellation (IC) capability on the HDHN throughput, and show the superiority of FD mode for larger AP densities (i.e., larger network interference and shorter communication distance) or higher self-IC capability. Furthermore, our results show operating all APs in FD or HD achieves higher throughput compared to the mixture of two mode APs in each tier network, and introducing hybrid-duplex for different tier networks improves the heterogenous network throughput.

Proceedings ArticleDOI
08 Jun 2015
TL;DR: A joint consideration of the problems of beamwidth selection and scheduling is proposed to maximize effective network throughput and aims to maximize the reuse of available spectrum.
Abstract: Millimeter wave (mmWave) wireless networks rely on narrow beams to support multi-gigabit data rates. Nevertheless, the alignment of transmitter and receiver beams is a timeconsuming operation, which introduces an alignment-throughput tradeoff. A wider beamwidth reduces the alignment overhead, but leads also to reduced directivity gains. Moreover, existing mmWave standards schedule a single transmission in each time slot, although directional communications facilitate multiple concurrent transmissions. In this paper, a joint consideration of the problems of beamwidth selection and scheduling is proposed to maximize effective network throughput. The resulting optimization problem requires exact knowledge of network topology, which may not be available in practice. Therefore, two standardcompliant approximation algorithms are developed, which rely on underestimation and overestimation of interference. The first one aims to maximize the reuse of available spectrum, whereas the second one is a more conservative approach that schedules together only links that cause no interference. Extensive performance analysis provides useful insights on the directionality level and the number of concurrent transmissions that should be pursued. Interestingly, extremely narrow beams are in general not optimal.

Journal ArticleDOI
Gan Zheng1
TL;DR: This paper proposes iterative algorithms and 1-D search to solve two problems: finding the achievable rate region and maximizing the sum rate in full-duplex radio to improve the spectrum efficiency in a two-way relay channel.
Abstract: In this paper, we explore the use of full-duplex radio to improve the spectrum efficiency in a two-way relay channel where two sources exchange information through an multi-antenna relay, and all nodes work in the full-duplex mode. The full-duplex operation can reduce the overall communication to only one phase but suffers from the self-interference. Instead of purely suppressing the self-interference, we aim to maximize the end-to-end performance by jointly optimizing the beamforming matrix at the relay which uses the amplify-and-forward protocol as well as the power control at the sources. To be specific, we propose iterative algorithms and 1-D search to solve two problems: finding the achievable rate region and maximizing the sum rate. At each iteration, either the analytical solution or convex formulation is obtained. We compare the proposed full-duplex two-way relaying with the conventional half-duplex two-way relaying, a full-duplex one-way relaying and a performance upper bound. Numerical results show that the proposed full-duplex scheme significantly improves the achievable data rates over the conventional scheme.

Journal ArticleDOI
TL;DR: This paper considers a multipair massive multiple-input-multiple-output two-way relay network, in which multiple pairs of users are served by a relay station with a large number of antennas, which uses maximum ratio combining/maximum ratio transmission and a fixed amplification factor for reception/ transmission.
Abstract: This paper considers a multipair massive multiple-input–multiple-output two-way relay network, in which multiple pairs of users are served by a relay station with a large number of antennas, which uses maximum ratio combining/maximum ratio transmission and a fixed amplification factor for reception/transmission. First, the users' ergodic rates are derived for the case with a finite number of antennas, and then, the rate gain is analyzed when the transmit power of the senders and the relay is sufficiently large. We show that the ergodic rates increase with the number of antennas at the relay, i.e., $N$ , but decrease with the number of user pairs, i.e., $K$ , both logarithmically. The energy efficiency for the network is also investigated when the number of antennas grows to infinity. It is further revealed that the ergodic sum-rate can be maintained while the users' transmit power is scaled down by a factor of $1/N$ or the relay power by a factor of $2K/N$ . This indicates that users obtain an energy efficiency gain of $N$ , but the relay has an energy efficiency gain of $N$ divided by the number of users, i.e., $2K$ .

Journal ArticleDOI
TL;DR: A cooperative D1D communication framework is proposed, which introduces the cooperative relay technique to conventional underlay/overlay D2D communications and extensive numerical results show the effectiveness of the proposed framework for a variety of scenarios.
Abstract: To meet the increasing demand of wireless broadband applications in 4G/beyond 4G cellular networks, D2D communication can serve as a candidate paradigm to improve spectrum efficiency. By reusing the spectrum of cellular users, two D2D users can form a direct data link without routing base stations and core networks; thus, the spectral efficiency can be improved. Further, when the cooperation between cellular users and D2D users is enabled, a win-win situation can be achieved to make all users better off. Thus motivated, we propose a cooperative D2D communication framework in this article, which introduces the cooperative relay technique to conventional underlay/overlay D2D communications. Adaptive mode selection and spectrum allocation schemes are also presented to ensure better performance for both cellular and D2D users. Extensive numerical results show the effectiveness of the proposed framework for a variety of scenarios.

Journal ArticleDOI
TL;DR: In this article, an average bit error probability (ABEP) analysis for maximum likelihood detection in multiuser GSM-MIMO on the uplink, where an upper bound on the ABEP was derived, and low-complexity algorithms for signal detection and channel estimation at the base station receiver based on message passing were proposed.
Abstract: Generalized spatial modulation (GSM) uses $n_{t} $ transmit antenna elements but fewer transmit radio frequency (RF) chains, $n_{rf} $ . Spatial modulation (SM) and spatial multiplexing are special cases of GSM with $n_{rf}=1$ and $n_{rf}=n_{t} $ , respectively. In GSM, in addition to conveying information bits through $n_{rf} $ conventional modulation symbols (for example, QAM), the indices of the $n_{rf} $ active transmit antennas also convey information bits. In this paper, we investigate GSM for large-scale multiuser MIMO communications on the uplink. Our contributions in this paper include: 1) an average bit error probability (ABEP) analysis for maximum-likelihood detection in multiuser GSM-MIMO on the uplink, where we derive an upper bound on the ABEP, and 2) low-complexity algorithms for GSM-MIMO signal detection and channel estimation at the base station receiver based on message passing. The analytical upper bounds on the ABEP are found to be tight at moderate to high signal-to-noise ratios (SNR) . The proposed receiver algorithms are found to scale very well in complexity while achieving near-optimal performance in large dimensions. Simulation results show that, for the same spectral efficiency, multiuser GSM-MIMO can outperform multiuser SM-MIMO as well as conventional multiuser MIMO, by about 2 to 9 dB at a bit error rate of $10^{-3} $ . Such SNR gains in GSM-MIMO compared to SM-MIMO and conventional MIMO can be attributed to the fact that, because of a larger number of spatial index bits, GSM-MIMO can use a lower-order QAM alphabet which is more power efficient.

Proceedings ArticleDOI
19 Apr 2015
TL;DR: The performance of the proposed hybrid beamforming design can achieve spectral efficiency close to that of the fully-digital solution, and bounds on the minimum number of transmit and receive RF chains that are required to realize the theoretical capacity of the large-scale MIMO system are presented.
Abstract: Large-scale multiple-input multiple-output (MIMO) systems enable high spectral efficiency by employing large antenna arrays at both the transmitter and the receiver of a wireless communication link. In traditional MIMO systems, full digital beamforming is done at the baseband; one distinct radio-frequency (RF) chain is required for each antenna, which for large-scale MIMO systems can be prohibitive from either cost or power consumption point of view. This paper considers a two-stage hybrid beamforming structure to reduce the number of RF chains for large-scale MIMO systems. The overall beamforming matrix consists of analog RF beamforming implemented using phase shifters and baseband digital beamforming of much smaller dimension. This paper considers precoder and receiver design for maximizing the spectral efficiency when the hybrid structure is used at both the transmitter and the receiver. On the theoretical front, bounds on the minimum number of transmit and receive RF chains that are required to realize the theoretical capacity of the large-scale MIMO system are presented. It is shown that the hybrid structure can achieve the same performance as the fully-digital beamforming scheme if the number of RF chains at each end is greater than or equal to twice the number of data streams. On the practical design front, this paper proposes a heuristic hybrid beamforming design strategy for the critical case where the number of RF chains is equal to the number of data streams, and shows that the performance of the proposed hybrid beamforming design can achieve spectral efficiency close to that of the fully-digital solution.