scispace - formally typeset
Search or ask a question
Topic

Spectral efficiency

About: Spectral efficiency is a research topic. Over the lifetime, 22526 publications have been published within this topic receiving 358103 citations. The topic is also known as: Spectral efficiency、Spectrum efficiency & spectrum efficiency.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the Shannon capacity of adaptive transmission techniques in conjunction with diversity-combining was studied. And the authors obtained closed-form solutions for the Rayleigh fading channel capacity under three adaptive policies: optimal power and rate adaptation, constant power with optimal rate adaptation and channel inversion with fixed rate.
Abstract: We study the Shannon capacity of adaptive transmission techniques in conjunction with diversity-combining. This capacity provides an upper bound on spectral efficiency using these techniques. We obtain closed-form solutions for the Rayleigh fading channel capacity under three adaptive policies: optimal power and rate adaptation, constant power with optimal rate adaptation, and channel inversion with fixed rate. Optimal power and rate adaptation yields a small increase in capacity over just rate adaptation, and this increase diminishes as the average received carrier-to-noise ratio (CNR) or the number of diversity branches increases. Channel inversion suffers the largest capacity penalty relative to the optimal technique, however, the penalty diminishes with increased diversity. Although diversity yields large capacity gains for all the techniques, the gain is most pronounced with channel inversion. For example, the capacity using channel inversion with two-branch diversity exceeds that of a single-branch system using optimal rate and power adaptation. Since channel inversion is the least complex scheme to implement, there is a tradeoff between complexity and capacity for the various adaptation methods and diversity-combining techniques.

1,036 citations

Journal ArticleDOI
TL;DR: The CDMA channel with randomly and independently chosen spreading sequences accurately models the situation where pseudonoise sequences span many symbol periods and provides a comparison baseline for CDMA channels with deterministic signature waveforms spanning one symbol period.
Abstract: The CDMA channel with randomly and independently chosen spreading sequences accurately models the situation where pseudonoise sequences span many symbol periods. Furthermore, its analysis provides a comparison baseline for CDMA channels with deterministic signature waveforms spanning one symbol period. We analyze the spectral efficiency (total capacity per chip) as a function of the number of users, spreading gain, and signal-to-noise ratio, and we quantify the loss in efficiency relative to an optimally chosen set of signature sequences and relative to multiaccess with no spreading. White Gaussian background noise and equal-power synchronous users are assumed. The following receivers are analyzed: (a) optimal joint processing, (b) single-user matched filtering, (c) decorrelation, and (d) MMSE linear processing.

1,015 citations

Journal ArticleDOI
TL;DR: A cross-layer design which combines adaptive modulation and coding at the physical layer with a truncated automatic repeat request protocol at the data link layer is developed in order to maximize spectral efficiency under prescribed delay and error performance constraints.
Abstract: We developed a cross-layer design which combines adaptive modulation and coding at the physical layer with a truncated automatic repeat request protocol at the data link layer, in order to maximize spectral efficiency under prescribed delay and error performance constraints. We derive the achieved spectral efficiency in closed-form for transmissions over Nakagami-m block fading channels. Numerical results reveal that retransmissions at the data link layer relieve stringent error control requirements at the physical layer, and thereby enable considerable spectral efficiency gain. This gain is comparable with that offered by diversity, provided that the maximum number of transmissions per packet equals the diversity order. Diminishing returns on spectral efficiency, that result when increasing the maximum number of retransmissions, suggest that a small number of retransmissions offers a desirable delay-throughput tradeoff, in practice.

972 citations

Journal ArticleDOI
TL;DR: This work reviews detection methods, including noncoherent, differentially coherent, and coherent detection, as well as a hybrid method, and compares modulation methods encoding information in various degrees of freedom (DOF).
Abstract: The drive for higher performance in optical fiber systems has renewed interest in coherent detection. We review detection methods, including noncoherent, differentially coherent, and coherent detection, as well as a hybrid method. We compare modulation methods encoding information in various degrees of freedom (DOF). Polarization-multiplexed quadrature-amplitude modulation maximizes spectral efficiency and power efficiency, by utilizing all four available DOF, the two field quadratures in the two polarizations. Dual-polarization homodyne or heterodyne downconversion are linear processes that can fully recover the received signal field in these four DOF. When downconverted signals are sampled at the Nyquist rate, compensation of transmission impairments can be performed using digital signal processing (DSP). Linear impairments, including chromatic dispersion and polarization-mode dispersion, can be compensated quasi-exactly using finite impulse response filters. Some nonlinear impairments, such as intra-channel four-wave mixing and nonlinear phase noise, can be compensated partially. Carrier phase recovery can be performed using feedforward methods, even when phase-locked loops may fail due to delay constraints. DSP-based compensation enables a receiver to adapt to time-varying impairments, and facilitates use of advanced forward-error-correction codes. We discuss both single- and multi-carrier system implementations. For a given modulation format, using coherent detection, they offer fundamentally the same spectral efficiency and power efficiency, but may differ in practice, because of different impairments and implementation details. With anticipated advances in analog-to-digital converters and integrated circuit technology, DSP-based coherent receivers at bit rates up to 100 Gbit/s should become practical within the next few years.

907 citations

Journal ArticleDOI
TL;DR: Simulation work is reported indicating that packet reservation multiple access (PRMA) allows a variety of information sources to share the same wireless access channel and achieves a promising combination of voice quality and bandwidth efficiency.
Abstract: Simulation work is reported indicating that packet reservation multiple access (PRMA) allows a variety of information sources to share the same wireless access channel. Some of the sources, such as speech terminals, are classified as periodic and others, such as signaling, are classified as random. Packets from all sources contend for access to channel time slots. When a periodic information terminal succeeds in gaining access, it reserves subsequent time slots for uncontested transmission. Both computer simulations and a listening test reveal that PRMA achieves a promising combination of voice quality and bandwidth efficiency. >

890 citations


Network Information
Related Topics (5)
Wireless network
122.5K papers, 2.1M citations
94% related
Fading
55.4K papers, 1M citations
93% related
Wireless
133.4K papers, 1.9M citations
93% related
Network packet
159.7K papers, 2.2M citations
92% related
Wireless ad hoc network
49K papers, 1.1M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023426
2022923
20211,393
20201,585
20191,758
20181,775