scispace - formally typeset

Topic

Spectral graph theory

About: Spectral graph theory is a(n) research topic. Over the lifetime, 1334 publication(s) have been published within this topic receiving 77373 citation(s).


Papers
More filters
Journal ArticleDOI
TL;DR: This work treats image segmentation as a graph partitioning problem and proposes a novel global criterion, the normalized cut, for segmenting the graph, which measures both the total dissimilarity between the different groups as well as the total similarity within the groups.
Abstract: We propose a novel approach for solving the perceptual grouping problem in vision. Rather than focusing on local features and their consistencies in the image data, our approach aims at extracting the global impression of an image. We treat image segmentation as a graph partitioning problem and propose a novel global criterion, the normalized cut, for segmenting the graph. The normalized cut criterion measures both the total dissimilarity between the different groups as well as the total similarity within the groups. We show that an efficient computational technique based on a generalized eigenvalue problem can be used to optimize this criterion. We applied this approach to segmenting static images, as well as motion sequences, and found the results to be very encouraging.

13,025 citations

Book
03 Dec 1996
TL;DR: Eigenvalues and the Laplacian of a graph Isoperimetric problems Diameters and eigenvalues Paths, flows, and routing Eigen values and quasi-randomness
Abstract: Eigenvalues and the Laplacian of a graph Isoperimetric problems Diameters and eigenvalues Paths, flows, and routing Eigenvalues and quasi-randomness Expanders and explicit constructions Eigenvalues of symmetrical graphs Eigenvalues of subgraphs with boundary conditions Harnack inequalities Heat kernels Sobolev inequalities Advanced techniques for random walks on graphs Bibliography Index.

6,908 citations

Journal ArticleDOI
TL;DR: A modularity matrix plays a role in community detection similar to that played by the graph Laplacian in graph partitioning calculations, and a spectral measure of bipartite structure in networks and a centrality measure that identifies vertices that occupy central positions within the communities to which they belong are proposed.
Abstract: We consider the problem of detecting communities or modules in networks, groups of vertices with a higher-than-average density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as ``modularity'' over possible divisions of a network. Here we show that this maximization process can be written in terms of the eigenspectrum of a matrix we call the modularity matrix, which plays a role in community detection similar to that played by the graph Laplacian in graph partitioning calculations. This result leads us to a number of possible algorithms for detecting community structure, as well as several other results, including a spectral measure of bipartite structure in networks and a centrality measure that identifies vertices that occupy central positions within the communities to which they belong. The algorithms and measures proposed are illustrated with applications to a variety of real-world complex networks.

4,062 citations

Proceedings Article
21 Aug 2003
TL;DR: An approach to semi-supervised learning is proposed that is based on a Gaussian random field model, and methods to incorporate class priors and the predictions of classifiers obtained by supervised learning are discussed.
Abstract: An approach to semi-supervised learning is proposed that is based on a Gaussian random field model. Labeled and unlabeled data are represented as vertices in a weighted graph, with edge weights encoding the similarity between instances. The learning problem is then formulated in terms of a Gaussian random field on this graph, where the mean of the field is characterized in terms of harmonic functions, and is efficiently obtained using matrix methods or belief propagation. The resulting learning algorithms have intimate connections with random walks, electric networks, and spectral graph theory. We discuss methods to incorporate class priors and the predictions of classifiers obtained by supervised learning. We also propose a method of parameter learning by entropy minimization, and show the algorithm's ability to perform feature selection. Promising experimental results are presented for synthetic data, digit classification, and text classification tasks.

3,709 citations

Journal ArticleDOI

3,549 citations

Network Information
Related Topics (5)
Bounded function

77.2K papers, 1.3M citations

82% related
Upper and lower bounds

56.9K papers, 1.1M citations

82% related
Iterative method

48.8K papers, 1.2M citations

81% related
Matrix (mathematics)

105.5K papers, 1.9M citations

80% related
Optimization problem

96.4K papers, 2.1M citations

79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20222
202153
202086
201981
201855
2017134