scispace - formally typeset
Search or ask a question
Topic

Spectral graph theory

About: Spectral graph theory is a research topic. Over the lifetime, 1334 publications have been published within this topic receiving 77373 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A spectral decomposition hybridized with an evolutionary heuristic, called MOSpecG, to approach this bi-objective problem and an ensemble strategy to consolidate the solutions found by M OSpecG into a final robust partition is introduced.
Abstract: Graph clustering is a challenging pattern recognition problem whose goal is to identify vertex partitions with high intra-group connectivity. This paper investigates a bi-objective problem that maximizes the number of intra-cluster edges of a graph and minimizes the expected number of inter-cluster edges in a random graph with the same degree sequence as the original one. The difference between the two investigated objectives is the definition of the well-known measure of graph clustering quality: the modularity. We introduce a spectral decomposition hybridized with an evolutionary heuristic, called MOSpecG, to approach this bi-objective problem and an ensemble strategy to consolidate the solutions found by MOSpecG into a final robust partition. The results of computational experiments with real and artificial LFR networks demonstrated a significant improvement in the results and performance of the introduced method in regard to another bi-objective algorithm found in the literature. The crossover operator based on the geometric interpretation of the modularity maximization problem to match the communities of a pair of individuals was of utmost importance for the good performance of MOSpecG. Hybridizing spectral graph theory and intelligent systems allowed us to define significantly high-quality community structures.

9 citations

Proceedings ArticleDOI
08 Sep 2015
TL;DR: Removing the positivity constraint provides a more accurate inference of a graph model behind the data, and thus can improve quality of filters for graph-based signal processing, e.g., denoising, compared to the standard construction, without affecting the costs.
Abstract: In [D01:10.1109/ICMEW.2014.6890711], a graph-based denoising is performed by projecting the noisy image to a lower dimensional Krylov subspace of the graph Laplacian, constructed using nonnegative weights determined by distances between image data corresponding to image pixels. We extend the construction of the graph Laplacian to the case, where some graph weights can be negative. Removing the positivity constraint provides a more accurate inference of a graph model behind the data, and thus can improve quality of filters for graph-based signal processing, e.g., denoising, compared to the standard construction, without affecting the costs.

9 citations

Journal ArticleDOI
TL;DR: An efficient heuristic for mapping the logical qubits of quantum algorithms to the physical qubitsof connectivity-limited devices is proposed, adding a minimal number of connectivity-compliant SWAP gates.
Abstract: We propose an efficient heuristic for mapping the logical qubits of quantum algorithms to the physical qubits of connectivity-limited devices, adding a minimal number of connectivity-compliant SWAP gates. In particular, given a quantum circuit, we construct an undirected graph with edge weights a function of the two-qubit gates of the quantum circuit. Taking inspiration from spectral graph drawing, we use an eigenvector of the graph Laplacian to place logical qubits at coordinate locations. These placements are then mapped to physical qubits for a given connectivity. We primarily focus on one-dimensional connectivities, and sketch how the general principles of our heuristic can be extended for use in more general connectivities.

9 citations

Journal ArticleDOI
TL;DR: In this paper, the first eigenvalue of the Laplacian and Cheeger constant converges to zero in the case of compact Riemannian manifolds and of finite graphs.
Abstract: We study the relationship between the first eigenvalue of the Laplacian and Cheeger constant when the Cheeger constant converges to zero, in the case of compact Riemannian manifolds and of finite graphs.

9 citations

Book
21 Jun 2018
TL;DR: In this paper, a self-contained book introduces readers to discrete harmonic analysis with an emphasis on the Discrete Fourier Transform and the Fast Fourier transform on finite groups and finite fields, as well as their non-commutative versions.
Abstract: This self-contained book introduces readers to discrete harmonic analysis with an emphasis on the Discrete Fourier Transform and the Fast Fourier Transform on finite groups and finite fields, as well as their noncommutative versions. It also features applications to number theory, graph theory, and representation theory of finite groups. Beginning with elementary material on algebra and number theory, the book then delves into advanced topics from the frontiers of current research, including spectral analysis of the DFT, spectral graph theory and expanders, representation theory of finite groups and multiplicity-free triples, Tao's uncertainty principle for cyclic groups, harmonic analysis on GL(2,Fq), and applications of the Heisenberg group to DFT and FFT. With numerous examples, figures, and over 160 exercises to aid understanding, this book will be a valuable reference for graduate students and researchers in mathematics, engineering, and computer science.

9 citations


Network Information
Related Topics (5)
Bounded function
77.2K papers, 1.3M citations
82% related
Upper and lower bounds
56.9K papers, 1.1M citations
82% related
Iterative method
48.8K papers, 1.2M citations
81% related
Matrix (mathematics)
105.5K papers, 1.9M citations
80% related
Optimization problem
96.4K papers, 2.1M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
202316
202236
202153
202086
201981