scispace - formally typeset
Search or ask a question
Topic

Spectral graph theory

About: Spectral graph theory is a research topic. Over the lifetime, 1334 publications have been published within this topic receiving 77373 citations.


Papers
More filters
Proceedings ArticleDOI
26 May 2013
TL;DR: A novel algorithm to interpolate data defined on graphs, using signal processing concepts, and imposes a `bilateral' weighting scheme on the links between known samples, which improves accuracy and complexity.
Abstract: In this paper, we propose a novel algorithm to interpolate data defined on graphs, using signal processing concepts. The interpolation of missing values from known samples appears in various applications, such as matrix/vector completion, sampling of high-dimensional data, semi-supervised learning etc. In this paper, we formulate the data interpolation problem as a signal reconstruction problem on a graph, where a graph signal is defined as the information attached to each node (scalar or vector values mapped to the set of vertices/edges of the graph). We use recent results for sampling in graphs to find classes of bandlimited (BL) graph signals that can be reconstructed from their partially observed samples. The interpolated signal is obtained by projecting the input signal into the appropriate BL graph signal space. Additionally, we impose a `bilateral' weighting scheme on the links between known samples, which further improves accuracy. We use our proposed method for collaborative filtering in recommendation systems. Preliminary results show a very favorable trade-off between accuracy and complexity, compared to state of the art algorithms.

254 citations

Journal ArticleDOI
TL;DR: The commute time can be anticipated to be a more robust measure of the proximity of data than the raw proximity matrix and developed a method for image segmentation using the eigenvector corresponding to the smallest eigenvalue of the commute time matrix.
Abstract: This paper exploits the properties of the commute time between nodes of a graph for the purposes of clustering and embedding and explores its applications to image segmentation and multibody motion tracking. Our starting point is the lazy random walk on the graph, which is determined by the heat kernel of the graph and can be computed from the spectrum of the graph Laplacian. We characterize the random walk using the commute time (that is, the expected time taken for a random walk to travel between two nodes and return) and show how this quantity may be computed from the Laplacian spectrum using the discrete Green's function. Our motivation is that the commute time can be anticipated to be a more robust measure of the proximity of data than the raw proximity matrix. In this paper, we explore two applications of the commute time. The first is to develop a method for image segmentation using the eigenvector corresponding to the smallest eigenvalue of the commute time matrix. We show that our commute time segmentation method has the property of enhancing the intragroup coherence while weakening intergroup coherence and is superior to the normalized cut. The second application is to develop a robust multibody motion tracking method using an embedding based on the commute time. Our embedding procedure preserves commute time and is closely akin to kernel PCA, the Laplacian eigenmap, and the diffusion map. We illustrate the results on both synthetic image sequences and real-world video sequences and compare our results with several alternative methods.

254 citations

Journal ArticleDOI
TL;DR: This paper generalizes the traditional concept of wide sense stationarity to signals defined over the vertices of arbitrary weighted undirected graphs and shows that stationarity is expressed through the graph localization operator reminiscent of translation.
Abstract: Graphs are a central tool in machine learning and information processing as they allow to conveniently capture the structure of complex datasets. In this context, it is of high importance to develop flexible models of signals defined over graphs or networks. In this paper, we generalize the traditional concept of wide sense stationarity to signals defined over the vertices of arbitrary weighted undirected graphs. We show that stationarity is expressed through the graph localization operator reminiscent of translation. We prove that stationary graph signals are characterized by a well-defined power spectral density that can be efficiently estimated even for large graphs. We leverage this new concept to derive Wiener-type estimation procedures of noisy and partially observed signals and illustrate the performance of this new model for denoising and regression.

246 citations

Proceedings Article
16 Jun 2012
TL;DR: A spectral clustering algorithm for similarity graphs drawn from a simple random graph model, where nodes are allowed to have varying degrees, is examined, and guarantees on the performance are shown that it outputs the correct partition under a wide range of parameter values.
Abstract: In this paper, we examine a spectral clustering algorithm for similarity graphs drawn from a simple random graph model, where nodes are allowed to have varying degrees, and we provide theoretical bounds on its performance. The random graph model we study is the Extended Planted Partition (EPP) model, a variant of the classical planted partition model. The standard approach to spectral clustering of graphs is to compute the bottom k singular vectors or eigenvectors of a suitable graph Laplacian, project the nodes of the graph onto these vectors, and then use an iterative clustering algorithm on the projected nodes. However a challenge with applying this approach to graphs generated from the EPP model is that unnormalized Laplacians do not work, and normalized Laplacians do not concentrate well when the graph has a number of low degree nodes. We resolve this issue by introducing the notion of a degree-corrected graph Laplacian. For graphs with many low degree nodes, degree correction has a regularizing eect on the Laplacian. Our spectral clustering algorithm projects the nodes in the graph onto the bottom k right singular vectors of the degree-corrected random-walk Laplacian, and clusters the nodes in this subspace. We show guarantees on the performance of this algorithm, demonstrating that it outputs the correct partition under a wide range of parameter values. Unlike some previous work, our algorithm does not require access to any generative parameters of the model.

245 citations


Network Information
Related Topics (5)
Bounded function
77.2K papers, 1.3M citations
82% related
Upper and lower bounds
56.9K papers, 1.1M citations
82% related
Iterative method
48.8K papers, 1.2M citations
81% related
Matrix (mathematics)
105.5K papers, 1.9M citations
80% related
Optimization problem
96.4K papers, 2.1M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
202316
202236
202153
202086
201981