scispace - formally typeset
Topic

Speech coding

About: Speech coding is a(n) research topic. Over the lifetime, 14245 publication(s) have been published within this topic receiving 271964 citation(s).


Papers
More filters
Journal ArticleDOI
TL;DR: An efficient and intuitive algorithm is presented for the design of vector quantizers based either on a known probabilistic model or on a long training sequence of data.
Abstract: An efficient and intuitive algorithm is presented for the design of vector quantizers based either on a known probabilistic model or on a long training sequence of data. The basic properties of the algorithm are discussed and demonstrated by examples. Quite general distortion measures and long blocklengths are allowed, as exemplified by the design of parameter vector quantizers of ten-dimensional vectors arising in Linear Predictive Coded (LPC) speech compression with a complicated distortion measure arising in LPC analysis that does not depend only on the error vector.

7,865 citations

Book
05 Sep 1978
TL;DR: This paper presents a meta-modelling framework for digital Speech Processing for Man-Machine Communication by Voice that automates the very labor-intensive and therefore time-heavy and expensive process of encoding and decoding speech.
Abstract: 1. Introduction. 2. Fundamentals of Digital Speech Processing. 3. Digital Models for the Speech Signal. 4. Time-Domain Models for Speech Processing. 5. Digital Representation of the Speech Waveform. 6. Short-Time Fourier Analysis. 7. Homomorphic Speech Processing. 8. Linear Predictive Coding of Speech. 9. Digital Speech Processing for Man-Machine Communication by Voice.

3,101 citations

Journal Article
TL;DR: During the past few years several design algorithms have been developed for a variety of vector quantizers and the performance of these codes has been studied for speech waveforms, speech linear predictive parameter vectors, images, and several simulated random processes.
Abstract: A vector quantizer is a system for mapping a sequence of continuous or discrete vectors into a digital sequence suitable for communication over or storage in a digital channel. The goal of such a system is data compression: to reduce the bit rate so as to minimize communication channel capacity or digital storage memory requirements while maintaining the necessary fidelity of the data. The mapping for each vector may or may not have memory in the sense of depending on past actions of the coder, just as in well established scalar techniques such as PCM, which has no memory, and predictive quantization, which does. Even though information theory implies that one can always obtain better performance by coding vectors instead of scalars, scalar quantizers have remained by far the most common data compression system because of their simplicity and good performance when the communication rate is sufficiently large. In addition, relatively few design techniques have existed for vector quantizers. During the past few years several design algorithms have been developed for a variety of vector quantizers and the performance of these codes has been studied for speech waveforms, speech linear predictive parameter vectors, images, and several simulated random processes. It is the purpose of this article to survey some of these design techniques and their applications.

2,743 citations

Book
01 Mar 1993
TL;DR: The preface to the IEEE Edition explains the background to speech production, coding, and quality assessment and introduces the Hidden Markov Model, the Artificial Neural Network, and Speech Enhancement.
Abstract: Preface to the IEEE Edition. Preface. Acronyms and Abbreviations. SIGNAL PROCESSING BACKGROUND. Propaedeutic. SPEECH PRODUCTION AND MODELLING. Fundamentals of Speech Science. Modeling Speech Production. ANALYSIS TECHNIQUES. Short--Term Processing of Speech. Linear Prediction Analysis. Cepstral Analysis. CODING, ENHANCEMENT AND QUALITY ASSESSMENT. Speech Coding and Synthesis. Speech Enhancement. Speech Quality Assessment. RECOGNITION. The Speech Recognition Problem. Dynamic Time Warping. The Hidden Markov Model. Language Modeling. The Artificial Neural Network. Index.

2,737 citations

Journal ArticleDOI
TL;DR: An unbiased noise estimator is developed which derives the optimal smoothing parameter for recursive smoothing of the power spectral density of the noisy speech signal by minimizing a conditional mean square estimation error criterion in each time step.
Abstract: We describe a method to estimate the power spectral density of nonstationary noise when a noisy speech signal is given. The method can be combined with any speech enhancement algorithm which requires a noise power spectral density estimate. In contrast to other methods, our approach does not use a voice activity detector. Instead it tracks spectral minima in each frequency band without any distinction between speech activity and speech pause. By minimizing a conditional mean square estimation error criterion in each time step we derive the optimal smoothing parameter for recursive smoothing of the power spectral density of the noisy speech signal. Based on the optimally smoothed power spectral density estimate and the analysis of the statistics of spectral minima an unbiased noise estimator is developed. The estimator is well suited for real time implementations. Furthermore, to improve the performance in nonstationary noise we introduce a method to speed up the tracking of the spectral minima. Finally, we evaluate the proposed method in the context of speech enhancement and low bit rate speech coding with various noise types.

1,668 citations


Network Information
Related Topics (5)
Signal processing
73.4K papers, 983.5K citations
86% related
Decoding methods
65.7K papers, 900K citations
84% related
Fading
55.4K papers, 1M citations
80% related
Feature vector
48.8K papers, 954.4K citations
80% related
Feature extraction
111.8K papers, 2.1M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202169
202062
201977
2018108
2017190
2016339