scispace - formally typeset
Search or ask a question
Topic

Speech enhancement

About: Speech enhancement is a research topic. Over the lifetime, 9417 publications have been published within this topic receiving 184028 citations.


Papers
More filters
Journal ArticleDOI
S. Boll1
TL;DR: A stand-alone noise suppression algorithm that resynthesizes a speech waveform and can be used as a pre-processor to narrow-band voice communications systems, speech recognition systems, or speaker authentication systems.
Abstract: A stand-alone noise suppression algorithm is presented for reducing the spectral effects of acoustically added noise in speech. Effective performance of digital speech processors operating in practical environments may require suppression of noise from the digital wave-form. Spectral subtraction offers a computationally efficient, processor-independent approach to effective digital speech analysis. The method, requiring about the same computation as high-speed convolution, suppresses stationary noise from speech by subtracting the spectral noise bias calculated during nonspeech activity. Secondary procedures are then applied to attenuate the residual noise left after subtraction. Since the algorithm resynthesizes a speech waveform, it can be used as a pre-processor to narrow-band voice communications systems, speech recognition systems, or speaker authentication systems.

4,862 citations

Journal ArticleDOI
TL;DR: In this article, a system which utilizes a minimum mean square error (MMSE) estimator is proposed and then compared with other widely used systems which are based on Wiener filtering and the "spectral subtraction" algorithm.
Abstract: This paper focuses on the class of speech enhancement systems which capitalize on the major importance of the short-time spectral amplitude (STSA) of the speech signal in its perception. A system which utilizes a minimum mean-square error (MMSE) STSA estimator is proposed and then compared with other widely used systems which are based on Wiener filtering and the "spectral subtraction" algorithm. In this paper we derive the MMSE STSA estimator, based on modeling speech and noise spectral components as statistically independent Gaussian random variables. We analyze the performance of the proposed STSA estimator and compare it with a STSA estimator derived from the Wiener estimator. We also examine the MMSE STSA estimator under uncertainty of signal presence in the noisy observations. In constructing the enhanced signal, the MMSE STSA estimator is combined with the complex exponential of the noisy phase. It is shown here that the latter is the MMSE estimator of the complex exponential of the original phase, which does not affect the STSA estimation. The proposed approach results in a significant reduction of the noise, and provides enhanced speech with colorless residual noise. The complexity of the proposed algorithm is approximately that of other systems in the discussed class.

3,905 citations

Book
01 Mar 1993
TL;DR: The preface to the IEEE Edition explains the background to speech production, coding, and quality assessment and introduces the Hidden Markov Model, the Artificial Neural Network, and Speech Enhancement.
Abstract: Preface to the IEEE Edition. Preface. Acronyms and Abbreviations. SIGNAL PROCESSING BACKGROUND. Propaedeutic. SPEECH PRODUCTION AND MODELLING. Fundamentals of Speech Science. Modeling Speech Production. ANALYSIS TECHNIQUES. Short--Term Processing of Speech. Linear Prediction Analysis. Cepstral Analysis. CODING, ENHANCEMENT AND QUALITY ASSESSMENT. Speech Coding and Synthesis. Speech Enhancement. Speech Quality Assessment. RECOGNITION. The Speech Recognition Problem. Dynamic Time Warping. The Hidden Markov Model. Language Modeling. The Artificial Neural Network. Index.

2,761 citations

Journal Article
TL;DR: This paper derives a minimum mean-square error STSA estimator, based on modeling speech and noise spectral components as statistically independent Gaussian random variables, which results in a significant reduction of the noise, and provides enhanced speech with colorless residual noise.
Abstract: Absstroct-This paper focuses on the class of speech enhancement systems which capitalize on the major importance of the short-time spectral amplitude (STSA) of the speech signal in its perception. A system which utilizes a minimum mean-square error (MMSE) STSA estimator is proposed and then compared with other widely used systems which are based on Wiener filtering and the \" spectral subtraction \" algorithm. In this paper we derive the MMSE STSA estimator, based on modeling speech and noise spectral components as statistically independent Gaussian random variables. We analyze the performance of the proposed STSA estimator and compare it with a STSA estimator derived from the Wiener estimator. We also examine the MMSE STSA estimator under uncertainty of signal presence in the noisy observations. In constructing the enhanced signal, the MMSE STSA estimator is combined with the complex exponential of the noisy phase. It is shown here that the latter is the MMSE estimator of the complex exponential of the original phase, which does not affect the STSA estimation. The proposed approach results in a significant reduction of the noise, and provides enhanced speech with colorless residual noise. The complexity of the proposed algorithm is approximately that of other systems in the discussed class.

2,714 citations

Book
07 Jun 2007
TL;DR: Clear and concise, this book explores how human listeners compensate for acoustic noise in noisy environments and suggests steps that can be taken to realize the full potential of these algorithms under realistic conditions.
Abstract: With the proliferation of mobile devices and hearing devices, including hearing aids and cochlear implants, there is a growing and pressing need to design algorithms that can improve speech intelligibility without sacrificing quality. Responding to this need, Speech Enhancement: Theory and Practice, Second Edition introduces readers to the basic problems of speech enhancement and the various algorithms proposed to solve these problems. Updated and expanded, this second edition of the bestselling textbook broadens its scope to include evaluation measures and enhancement algorithms aimed at improving speech intelligibility. Fundamentals, Algorithms, Evaluation, and Future Steps Organized into four parts, the book begins with a review of the fundamentals needed to understand and design better speech enhancement algorithms. The second part describes all the major enhancement algorithms and, because these require an estimate of the noise spectrum, also covers noise estimation algorithms. The third part of the book looks at the measures used to assess the performance, in terms of speech quality and intelligibility, of speech enhancement methods. It also evaluates and compares several of the algorithms. The fourth part presents binary mask algorithms for improving speech intelligibility under ideal conditions. In addition, it suggests steps that can be taken to realize the full potential of these algorithms under realistic conditions. Whats New in This Edition Updates in every chapter A new chapter on objective speech intelligibility measures A new chapter on algorithms for improving speech intelligibility Real-world noise recordings (on accompanying CD) MATLAB code for the implementation of intelligibility measures (on accompanying CD) MATLAB and C/C++ code for the implementation of algorithms to improve speech intelligibility (on accompanying CD) Valuable Insights from a Pioneer in Speech Enhancement Clear and concise, this book explores how human listeners compensate for acoustic noise in noisy environments. Written by a pioneer in speech enhancement and noise reduction in cochlear implants, it is an essential resource for anyone who wants to implement or incorporate the latest speech enhancement algorithms to improve the quality and intelligibility of speech degraded by noise. Includes a CD with Code and Recordings The accompanying CD provides MATLAB implementations of representative speech enhancement algorithms as well as speech and noise databases for the evaluation of enhancement algorithms.

2,269 citations


Network Information
Related Topics (5)
Feature vector
48.8K papers, 954.4K citations
82% related
Signal processing
73.4K papers, 983.5K citations
82% related
Feature extraction
111.8K papers, 2.1M citations
82% related
Deep learning
79.8K papers, 2.1M citations
79% related
Unsupervised learning
22.7K papers, 1M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023219
2022461
2021552
2020610
2019567
2018550