scispace - formally typeset
Topic

Speedup

About: Speedup is a(n) research topic. Over the lifetime, 23618 publication(s) have been published within this topic receiving 390005 citation(s).

...read more

Papers
More filters

Proceedings Article
15 Feb 2016-
Abstract: Neural networks are both computationally intensive and memory intensive, making them difficult to deploy on embedded systems with limited hardware resources. To address this limitation, we introduce "deep compression", a three stage pipeline: pruning, trained quantization and Huffman coding, that work together to reduce the storage requirement of neural networks by 35x to 49x without affecting their accuracy. Our method first prunes the network by learning only the important connections. Next, we quantize the weights to enforce weight sharing, finally, we apply Huffman coding. After the first two steps we retrain the network to fine tune the remaining connections and the quantized centroids. Pruning, reduces the number of connections by 9x to 13x; Quantization then reduces the number of bits that represent each connection from 32 to 5. On the ImageNet dataset, our method reduced the storage required by AlexNet by 35x, from 240MB to 6.9MB, without loss of accuracy. Our method reduced the size of VGG-16 by 49x from 552MB to 11.3MB, again with no loss of accuracy. This allows fitting the model into on-chip SRAM cache rather than off-chip DRAM memory. Our compression method also facilitates the use of complex neural networks in mobile applications where application size and download bandwidth are constrained. Benchmarked on CPU, GPU and mobile GPU, compressed network has 3x to 4x layerwise speedup and 3x to 7x better energy efficiency.

...read more

5,836 citations


Journal ArticleDOI

[...]

Limin Fu1, Beifang Niu1, Zhengwei Zhu1, Sitao Wu1  +1 moreInstitutions (1)
01 Dec 2012-Bioinformatics
TL;DR: A new CD-HIT program accelerated with a novel parallelization strategy and some other techniques to allow efficient clustering of such datasets to reduce sequence redundancy and improve the performance of other sequence analyses is developed.

...read more

Abstract: Summary: CD-HIT is a widely used program for clustering biological sequences to reduce sequence redundancy and improve the performance of other sequence analyses. In response to the rapid increase in the amount of sequencing data produced by the next-generation sequencing technologies, we have developed a new CD-HIT program accelerated with a novel parallelization strategy and some other techniques to allow efficient clustering of such datasets. Our tests demonstrated very good speedup derived from the parallelization for up to ~24 cores and a quasi-linear speedup for up to ~8 cores. The enhanced CD-HIT is capable of handling very large datasets in much shorter time than previous versions. Availability: http://cd-hit.org. Contact: [email protected] Supplementary information:Supplementary data are available at Bioinformatics online.

...read more

3,948 citations


Proceedings ArticleDOI
18 Jun 2018-
Abstract: We introduce an extremely computation-efficient CNN architecture named ShuffleNet, which is designed specially for mobile devices with very limited computing power (e.g., 10-150 MFLOPs). The new architecture utilizes two new operations, pointwise group convolution and channel shuffle, to greatly reduce computation cost while maintaining accuracy. Experiments on ImageNet classification and MS COCO object detection demonstrate the superior performance of ShuffleNet over other structures, e.g. lower top-1 error (absolute 7.8%) than recent MobileNet [12] on ImageNet classification task, under the computation budget of 40 MFLOPs. On an ARM-based mobile device, ShuffleNet achieves ~13A— actual speedup over AlexNet while maintaining comparable accuracy.

...read more

3,152 citations


Journal ArticleDOI
TL;DR: Two novel scheduling algorithms for a bounded number of heterogeneous processors with an objective to simultaneously meet high performance and fast scheduling time are presented, called the Heterogeneous Earliest-Finish-Time (HEFT) algorithm and the Critical-Path-on-a-Processor (CPOP) algorithm.

...read more

Abstract: Efficient application scheduling is critical for achieving high performance in heterogeneous computing environments. The application scheduling problem has been shown to be NP-complete in general cases as well as in several restricted cases. Because of its key importance, this problem has been extensively studied and various algorithms have been proposed in the literature which are mainly for systems with homogeneous processors. Although there are a few algorithms in the literature for heterogeneous processors, they usually require significantly high scheduling costs and they may not deliver good quality schedules with lower costs. In this paper, we present two novel scheduling algorithms for a bounded number of heterogeneous processors with an objective to simultaneously meet high performance and fast scheduling time, which are called the Heterogeneous Earliest-Finish-Time (HEFT) algorithm and the Critical-Path-on-a-Processor (CPOP) algorithm. The HEFT algorithm selects the task with the highest upward rank value at each step and assigns the selected task to the processor, which minimizes its earliest finish time with an insertion-based approach. On the other hand, the CPOP algorithm uses the summation of upward and downward rank values for prioritizing tasks. Another difference is in the processor selection phase, which schedules the critical tasks onto the processor that minimizes the total execution time of the critical tasks. In order to provide a robust and unbiased comparison with the related work, a parametric graph generator was designed to generate weighted directed acyclic graphs with various characteristics. The comparison study, based on both randomly generated graphs and the graphs of some real applications, shows that our scheduling algorithms significantly surpass previous approaches in terms of both quality and cost of schedules, which are mainly presented with schedule length ratio, speedup, frequency of best results, and average scheduling time metrics.

...read more

2,550 citations


Journal ArticleDOI
Richard M. Fujimoto1Institutions (1)
TL;DR: This article deals with the execution of a simulation program on a parallel computer by decomposing the simulation application into a set of concurrently executing processes and introduces interesting synchronization problems that are at the heart of the PDES problem.

...read more

Abstract: Parallel discrete event simulation (PDES), sometimes called distributed simulation, refers to the execution of a single discrete event simulation program on a parallel computer. PDES has attracted a considerable amount of interest in recent years. From a pragmatic standpoint, this interest arises from the fact that large simulations in engineering, computer science, economics, and military applications, to mention a few, consume enormous amounts of time on sequential machines. From an academic point of view, parallel simulation is interesting because it represents a problem domain that often contains substantial amounts of parallelism (e.g., see [59]), yet paradoxically, is surprisingly difficult to parallelize in practice. A sufficiently general solution to the PDES problem may lead to new insights in parallel computation as a whole. Historically, the irregular, data-dependent nature of PDES programs has identified it as an application where vectorization techniques using supercomputer hardware provide little benefit [14].A discrete event simulation model assumes the system being simulated only changes state at discrete points in simulated time. The simulation model jumps from one state to another upon the occurrence of an event. For example, a simulator of a store-and-forward communication network might include state variables to indicate the length of message queues, the status of communication links (busy or idle), etc. Typical events might include arrival of a message at some node in the network, forwarding a message to another network node, component failures, etc.We are especially concerned with the simulation of asynchronous systems where events are not synchronized by a global clock, but rather, occur at irregular time intervals. For these systems, few simulator events occur at any single point in simulated time; therefore parallelization techniques based on lock-step execution using a global simulation clock perform poorly or require assumptions in the timing model that may compromise the fidelity of the simulation. Concurrent execution of events at different points in simulated time is required, but as we shall soon see, this introduces interesting synchronization problems that are at the heart of the PDES problem.This article deals with the execution of a simulation program on a parallel computer by decomposing the simulation application into a set of concurrently executing processes. For completeness, we conclude this section by mentioning other approaches to exploiting parallelism in simulation problems.Comfort and Shepard et al. have proposed using dedicated functional units to implement specific sequential simulation functions, (e.g., event list manipulation and random number generation [20, 23, 47]). This method can provide only a limited amount of speedup, however. Zhang, Zeigler, and Concepcion use the hierarchical decomposition of the simulation model to allow an event consisting of several subevents to be processed concurrently [21, 98]. A third alternative is to execute independent, sequential simulation programs on different processors [11, 39]. This replicated trials approach is useful if the simulation is largely stochastic and one is performing long simulation runs to reduce variance, or if one is attempting to simulate a specific simulation problem across a large number of different parameter settings. However, one drawback with this approach is that each processor must contain sufficient memory to hold the entire simulation. Furthermore, this approach is less suitable in a design environment where results of one experiment are used to determine the experiment that should be performed next because one must wait for a sequential execution to be completed before results are obtained.

...read more

1,595 citations


Network Information
Related Topics (5)
Scalability

50.9K papers, 931.6K citations

95% related
CUDA

10.9K papers, 218.7K citations

94% related
Parallel algorithm

23.6K papers, 452.6K citations

94% related
Message passing

10K papers, 202.2K citations

92% related
Multi-core processor

15.4K papers, 266K citations

92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202226
20211,277
20201,353
20191,367
20181,404
20171,300

Top Attributes

Show by:

Topic's top 5 most impactful authors

Wayne Luk

51 papers, 1K citations

Viktor K. Prasanna

40 papers, 761 citations

Bormin Huang

30 papers, 437 citations

Sheldon X.-D. Tan

29 papers, 240 citations

Xuehai Zhou

29 papers, 387 citations