scispace - formally typeset
Search or ask a question
Topic

Sperm motility

About: Sperm motility is a research topic. Over the lifetime, 13874 publications have been published within this topic receiving 416587 citations. The topic is also known as: sperm movement & GO:0097722.


Papers
More filters
Journal ArticleDOI
TL;DR: The present in vitro study shows that catfish spermatozoa are more sensitive to TBT exposure (and probably to other toxicants) than those of carp.
Abstract: The effects of tributyltin (TBT) on the energy metabolism and motility of fish spermatozoa were investigated in vitro in African catfish and common carp. A significant (P<0.05) decrease of the duration and the intensity of motility was observed in catfish spermatozoa exposed to 0.27 microg/l TBT for 24 h. Exposure of catfish spermatozoa to 2.7-27 microg/l TBT caused an instant decrease in ATP content. In the presence of 27 microg/l TBT approximately 55% of the initial ATP concentration in catfish semen was lost after 60 min incubation while AMP concentrations increased and the total adenine nucleotide (TAN) pool remained unchanged. The reduction in sperm ATP levels could not be attributed to cell death since viability decreased only slightly over the period of exposure. In carp by contrast, none of the adenylates concentrations studied (ATP, ADP and AMP) were affected by TBT exposure at any experimental condition. However, carp sperm motility was significantly reduced by exposure to 2.7 microg/l TBT. Among the enzymes investigated only lactate dehydrogenase (LDH) in catfish sperm was significantly (P<0.01) affected by 27 microg/l TBT treatment with a reduction in activity of approximately 75%. Compared with carp sperm before TBT exposure, that of catfish had lower adenylate contents and overall lower enzymatic activities; this explains its slower sperm velocity and shorter duration of movement as measured by computer assisted sperm analysis (CASA). The present in vitro study shows that catfish spermatozoa are more sensitive to TBT exposure (and probably to other toxicants) than those of carp.

111 citations

Journal ArticleDOI
22 Feb 2017-eLife
TL;DR: It is speculated that the newly identified CatSperζ subunit is a late evolutionary adaptation to maximize fertilization inside the mammalian female reproductive tract.
Abstract: Male mammals ejaculate millions of sperm cells each time they mate with a female. Only a few of these cells manage to travel up the female’s reproductive tract to reach the egg, and usually only one sperm fertilizes it. Freshly ejaculated sperm are incapable of fertilizing eggs and have to undergo several changes within the female to become able to do so. One crucial change occurs in the sperm tail, which starts to beat vigorously in a whip-like motion. This type of movement – known as hyperactivated motility – enables the sperm to swim towards the egg, push through a sticky coating that surrounds it, and then burrow into it. Hyperactivated motility is triggered when calcium ions enter the sperm cell via a specific channel protein known as CatSper, which is found in the membrane that surrounds the cell. CatSper channels form groups (known as complexes) with several other proteins that are arranged in a unique pattern of four straight ‘stripes’ running down the tail of the sperm. This arrangement is necessary for hyperactivated motility and mutations in the genes that encode these proteins can lead to infertility in males. The CatSper channel complex is known to contain seven proteins: four that form a pore through which calcium ions can enter, and three accessory proteins whose roles in hyperactivated motility are less clear. Chung et al. identified two genes in mice that encode new accessory proteins in the CatSper channel complex named CatSper epsilon and CatSper zeta. Further experiments analyzed the role of CatSper zeta in more detail. Mutant males that lack CatSper zeta have fragmented patterns of CatSper stripes in the tails of their sperm. Moreover, fewer calcium ions were able to pass through the channels to enter the cell. Together, this made the sperm tail more rigid, which prevented it from moving efficiently within the female, resulting in reduced fertility. Chung et al. also found that the mutant sperm were less able to penetrate the egg than normal sperm. During evolution, the gene that encodes CatSper zeta appeared first in mammals and may represent an adaptation that improved the chances of a sperm fertilizing the egg inside the reproductive tract of female mammals. Future challenges will be to explore how the CatSper channel assembles on the membrane of sperm and find out exactly how calcium ions trigger hyperactivated motility.

111 citations

Journal ArticleDOI
TL;DR: Experimental evidence demonstrates that prostate-specific antigen (PSA) rapidly cleaves Sg, an event temporally associated with semen liquefaction and initiation of sperm motility, which could play important role in preventing premature capacitation.
Abstract: Semenogelin (Sg), the main component of the human semen coagulum, is an important and versatile protein acting on several sperm parameters, both as intact or degraded Sg. Sg originates mostly from seminal vesicle and probably is responsible for sperm immobilization in the seminal coagulum. Purified Sg can be cross-linked by transglutaminase or phosphorylated by kinases, but the actual occurrence of these reactions in reproductive physiology is not clear. Experimental evidence demonstrates that prostate-specific antigen (PSA) rapidly cleaves Sg, an event temporally associated with semen liquefaction and initiation of sperm motility. Sg and its degradation peptides participate in various processes including Zn +2 shuttling, antibacterial activity, hyaluronidase activation, and so on. Sg inhibits sperm motility at the concentration found in the coagulum, but the rapid processing by PSA allows initiation of movement. The mechanism of Sg action and its targets are not known, but improper Sg degradation decreases fertility. Sg and its degradation peptides block sperm capacitation and associated events at concentrations much lower than those of seminal plasma and could play important role in preventing premature capacitation. The effects of Sg are dependent on time and proteolysis due to PSA, and any imbalance may affect sperm physiology and fertility.

111 citations

Journal ArticleDOI
TL;DR: DNA dispersion, as measured by the SCD test, is not correlated with pregnancy outcome in IUI, and was negatively correlated with sperm motility in both ejaculated and processed semen.
Abstract: BACKGROUND: Sperm DNA integrity has been used as a new marker of sperm quality in the prediction of pregnancy. Nevertheless, no previous study has been performed by analysing the same samples that were employed in assisted reproduction. The main objective of this work was to correlate sperm chromatin dispersion (SCD), measured by the SCD test, with semen parameters and pregnancy outcome in intrauterine insemination (IUI). METHODS: A total of 100 semen samples obtained from males of couples undergoing IUI were analysed by the SCD test before and after swim-up, and the results were correlated with semen parameters and pregnancy outcome. RESULTS: SCD was negatively correlated with sperm motility in both ejaculated and processed semen. Sperm recovered by swim-up did not show a significant improvement in DNA integrity. No correlation was found between SCD and pregnancy outcome in IUI. CONCLUSIONS: DNA dispersion, as measured by the SCD test, is not correlated with pregnancy outcome in IUI.

110 citations

Journal ArticleDOI
TL;DR: It is demonstrated that SPP1 plays an important role in the regulation of pig polyspermic fertilization; it decreasespolyspermy and increases fertilization efficiency during IVF.
Abstract: This study was designed to determine the role of osteopontin (SPP1) in in vitro fertilization (IVF) in swine. The initial objective was to evaluate the effect of various concentrations of SPP1 (0, 0.001, 0.01, 0.1 and 1 μg/ml) on spermatozoa and oocytes during IVF. The results demonstrate that SPP1 reduced the rate of polyspermy in a dose-dependent manner (P < 0.05). SPP1 also reduced both the number of sperm in oocytes as compared to the control and the number of spermatozoa bound to the zona pellucida (ZP) (P < 0.05). High doses of SPP1 (1 μg/ml) reduced penetration and male pronucleus formation as compared to the control (P < 0.05). Interestingly, compared to the control group, medium doses of SPP1 increased fertilization efficiency (42.6% and 44.6% vs. 31.6%; P < 0.05), representing a 41% improvement for 0.1 μg/ml SPP1). The ZP of 0.1 μg/ml SPP1-treated oocytes was more difficult to digest than control oocytes (P < 0.05). The percentage of acrosome-reacted spermato zoa bound to the ZP during IVF increased after 4 h of 1.0 μg/ml SPP1 treatment compared to 0 or 0.1 μg/ml SPP1. SPP1 did not have an effect on sperm motility, progressive motility, and sperm viability. To confirm that the reduction of polyspermy was specific to SPP1, a mixture of pregnancy-associated glycoproteins was included in the IVF protocol and shown to have no effect on polyspermy. Furthermore, Western blotting demonstrated that a 50-kDa SPP1 form was present in the oviducts on Days 0, 3, and 5 in pregnant and nonpregnant gilts, and the concentration of SPP1 on Day 0 was higher than on Days 3 and 5. The current study represents the first report to demonstrate that SPP1 plays an important role in the regulation of pig polyspermic fertilization; it decreases polyspermy and increases fertilization efficiency during IVF.

110 citations


Network Information
Related Topics (5)
Sperm
43.4K papers, 1.3M citations
95% related
Luteinizing hormone
23.9K papers, 756K citations
85% related
Testosterone
23.2K papers, 808K citations
82% related
Androgen
18.9K papers, 798.4K citations
80% related
Prolactin
22.3K papers, 609.5K citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023383
2022912
2021582
2020616
2019552
2018576