scispace - formally typeset
Search or ask a question
Topic

Sperm motility

About: Sperm motility is a research topic. Over the lifetime, 13874 publications have been published within this topic receiving 416587 citations. The topic is also known as: sperm movement & GO:0097722.


Papers
More filters
Journal ArticleDOI
TL;DR: The data suggest that ROS induce a chain of events leading to sperm immobilization, that axonemes are affected, and that limited endogenous repair mechanisms exist to reverse these damages.
Abstract: Mammalian spermatozoa are sensitive to oxygen-induced damages mediated by lipid peroxidation of the cell membrane. The aim of this study was to evaluate whether reactive oxygen species (ROS) could also induce axonemal damage. When Percoll-separated spermatozoa were treated with hydrogen peroxide, or the combination xanthine and xanthine oxidase (X + XO), there was a progressive decrease, leading to a complete arrest, in sperm flagellar beat frequency. Once demembranated in a medium containing magnesium adenosine triphosphate (Mg.ATP), ROS-immobilized spermatozoa still reactivated motility; however, the percentage and duration of motility obtained in these tests gradually decreased to zero in the next hour. In 50% of the cases, motility of intact spermatozoa spontaneously reinitiated after 6 to 24 hours of immobilization due to ROS treatment, although with percentages and beat frequencies lower than those of untreated spermatozoa. Studies using ROS scavengers (such as catalase, superoxide dismutase, and dimethylsulfoxide) indicated that hydrogen peroxide was the most toxic of the ROS involved, but that .O2- and .OH probably also played a role in immobilization of spermatozoa by ROS. The data suggest that ROS induce a chain of events leading to sperm immobilization, that axonemes are affected, and that limited endogenous repair mechanisms exist to reverse these damages.

603 citations

Journal ArticleDOI
TL;DR: Existing methods of sperm quality assessment in fish are reviewed, the factors affecting quality are surveyed and how the application of computer-calculated motility analysis may achieve a better understanding and quantification of the impact of aquaculture practices on sperm quality and fertilisation success is shown.

596 citations

Journal ArticleDOI
TL;DR: In this paper, the incidence of reactive oxygen species formation in whole semen and in washed spermatozoa was studied and the effect of the type of sperm washing was also investigated.

593 citations

Journal ArticleDOI
TL;DR: Treatment of asthenospermic patients with oral Vitamin E significantly decreased the MDA concentration in spermatozoa and improved sperm motility, and nine of the 52 treated patients successfully impregnated their spouses.
Abstract: Asthenospermia is the main factor of male infertility among patients consulting the Asir Infertility Center in Abha, Saudi Arabia. Lipid peroxidation occurring in both the seminal plasma and spermatozoa was estimated by malondialdehyde (MDA) concentration. Spermatozoal MDA concentration was higher in men with decreased sperm motility. The MDA concentration in the seminal plasma exhibited no relationship with sperm concentration, sperm motility, the number of immotile spermatozoa, or even the absence of spermatozoa. The MDA concentration in sperm pellet suspensions of asthenospermic and oligoasthenospermic patients was almost twice that of the normospermic males. The MDA concentration in the sperm pellet suspension from normospermic or oligospermic patients was about 10% that in the seminal plasma. However, the MDA concentration in the sperm pellet suspension of asthenospermic or oligoasthenospermic patients was about 15% that in the seminal plasma. Treatment of asthenospermic patients with oral Vitamin E significantly decreased the MDA concentration in spermatozoa and improved sperm motility. Eleven out of the 52 treated patients (21%) impregnated their spouses; nine of the spouses successfully ended with normal term deliveries, whereas the other two aborted in the first trimester. No pregnancies were reported in the spouses of the placebo-treated patients.

577 citations

Journal ArticleDOI
TL;DR: The critical role of glycolysis in sperm and its dependence on this sperm-specific enzyme suggest that GAPDS is a potential contraceptive target, and that mutations or environmental agents that disrupt its activity could lead to male infertility.
Abstract: Although glycolysis is highly conserved, it is remarkable that several unique isozymes in this central metabolic pathway are found in mammalian sperm. Glyceraldehyde 3-phosphate dehydrogenase-S (GAPDS) is the product of a mouse gene expressed only during spermatogenesis and, like its human ortholog (GAPD2), is the sole GAPDH isozyme in sperm. It is tightly bound to the fibrous sheath, a cytoskeletal structure that extends most of the length of the sperm flagellum. We disrupted Gapds expression by gene targeting to selectively block sperm glycolysis and assess its relative importance for in vivo sperm function. Gapds–/– males were infertile and had profound defects in sperm motility, exhibiting sluggish movement without forward progression. Although mitochondrial oxygen consumption was unchanged, sperm from Gapds–/– mice had ATP levels that were only 10.4% of those in sperm from WT mice. These results imply that most of the energy required for sperm motility is generated by glycolysis rather than oxidative phosphorylation. Furthermore, the critical role of glycolysis in sperm and its dependence on this sperm-specific enzyme suggest that GAPDS is a potential contraceptive target, and that mutations or environmental agents that disrupt its activity could lead to male infertility.

567 citations


Network Information
Related Topics (5)
Sperm
43.4K papers, 1.3M citations
95% related
Luteinizing hormone
23.9K papers, 756K citations
85% related
Testosterone
23.2K papers, 808K citations
82% related
Androgen
18.9K papers, 798.4K citations
80% related
Prolactin
22.3K papers, 609.5K citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023383
2022912
2021582
2020616
2019552
2018576