scispace - formally typeset
Search or ask a question
Topic

Spin-½

About: Spin-½ is a research topic. Over the lifetime, 40423 publications have been published within this topic receiving 796639 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The authors assess various approximate forms for the correlation energy per particle of the spin-polarized homogeneous electron gas that have frequently been used in applications of the local spin density a...
Abstract: We assess various approximate forms for the correlation energy per particle of the spin-polarized homogeneous electron gas that have frequently been used in applications of the local spin density a...

17,531 citations

Journal ArticleDOI
TL;DR: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems as discussed by the authors, where the primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport.
Abstract: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.

9,158 citations

Journal ArticleDOI
TL;DR: In this paper, the interaction between spin waves and itinerant electrons is considerably enhanced in the vicinity of an interface between normal and ferromagnetic layers in metallic thin films, leading to a local increase of the Gilbert damping parameter which characterizes spin dynamics.
Abstract: The interaction between spin waves and itinerant electrons is considerably enhanced in the vicinity of an interface between normal and ferromagnetic layers in metallic thin films. This leads to a local increase of the Gilbert damping parameter which characterizes spin dynamics. When a dc current crosses this interface, stimulated emission of spin waves is predicted to take place. Beyond a certain critical current density, the spin damping becomes negative; a spontaneous precession of the magnetization is predicted to arise. This is the magnetic analog of the injection laser. An extra dc voltage appears across the interface, given by an expression similar to that for the Josephson voltage across a superconducting junction. \textcopyright{} 1996 The American Physical Society.

4,433 citations

Journal ArticleDOI
TL;DR: In this article, a spin dependent one-electron potential pertinent to ground state properties is obtained from calculations of the total energy per electron made with a 'bubble' (or random phase) type of dielectric function.
Abstract: The local density theory is developed by Hohenberg, Kohn and Sham is extended to the spin polarized case. A spin dependent one- electron potential pertinent to ground state properties is obtained from calculations of the total energy per electron made with a 'bubble' (or random phase) type of dielectric function. The potential is found to be well represented by an analytic expression corresponding to a shifted and rescaled spin dependent Slater potential. To test this potential the momentum dependent spin susceptibility of an electron gas is calculated. The results compare favourably with available information from other calculations and from experiment. The potential obtained in this paper should be useful for split band calculations of magnetic materials.

3,750 citations

Journal ArticleDOI
04 May 2012-Science
TL;DR: In this paper, a giant spin Hall effect (SHE) in β-tantalum was shown to generate spin currents intense enough to induce spin-torque switching of ferromagnets at room temperature.
Abstract: Spin currents can apply useful torques in spintronic devices. The spin Hall effect has been proposed as a source of spin current, but its modest strength has limited its usefulness. We report a giant spin Hall effect (SHE) in β-tantalum that generates spin currents intense enough to induce efficient spin-torque switching of ferromagnets at room temperature. We quantify this SHE by three independent methods and demonstrate spin-torque switching of both out-of-plane and in-plane magnetized layers. We furthermore implement a three-terminal device that uses current passing through a tantalum-ferromagnet bilayer to switch a nanomagnet, with a magnetic tunnel junction for read-out. This simple, reliable, and efficient design may eliminate the main obstacles to the development of magnetic memory and nonvolatile spin logic technologies.

3,330 citations


Network Information
Related Topics (5)
Ground state
70K papers, 1.5M citations
96% related
Phase transition
82.8K papers, 1.6M citations
94% related
Quantum
60K papers, 1.2M citations
92% related
Electron
111.1K papers, 2.1M citations
91% related
Excited state
102.2K papers, 2.2M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202234
20212,352
20201,787
20191,748
20181,696
20171,621