scispace - formally typeset
Search or ask a question

Showing papers on "Spin-½ published in 2019"


Journal ArticleDOI
TL;DR: In this paper, a new class of hybrid quantum systems based on collective spin excitations in ferromagnetic materials has led to a diverse set of experimental platforms which are outlined in this review article.
Abstract: Engineered quantum systems enabling novel capabilities for communication, computation, and sensing have blossomed in the last decade. Architectures benefiting from combining distinct and complementary physical quantum systems have emerged as promising platforms for developing quantum technologies. A new class of hybrid quantum systems based on collective spin excitations in ferromagnetic materials has led to the diverse set of experimental platforms which are outlined in this review article. The coherent interaction between microwave cavity modes and collective spin-wave modes is presented as the backbone of the development of more complex hybrid quantum systems. Indeed, quanta of excitation of the spin-wave modes, called magnons, can also interact coherently with optical photons, phonons, and superconducting qubits in the fields of cavity optomagnonics, cavity magnomechanics, and quantum magnonics, respectively. Notably, quantum magnonics provides a promising platform for performing quantum optics experiments in magnetically-ordered solid-state systems. Applications of hybrid quantum systems based on magnonics for quantum information processing and quantum sensing are also outlined briefly.

379 citations


Journal ArticleDOI
TL;DR: In this article, a unitary coupled-cluster (UCC) ansatz based on a family of sparse generalized doubles operators, called k-UpCCGSD, was proposed for quantum computing applications.
Abstract: We introduce a unitary coupled-cluster (UCC) ansatz termed k-UpCCGSD that is based on a family of sparse generalized doubles operators, which provides an affordable and systematically improvable unitary coupled-cluster wave function suitable for implementation on a near-term quantum computer. k-UpCCGSD employs k products of the exponential of pair coupled-cluster double excitation operators (pCCD), together with generalized single excitation operators. We compare its performance in both efficiency of implementation and accuracy with that of the generalized UCC ansatz employing the full generalized single and double excitation operators (UCCGSD), as well as with the standard ansatz employing only single and double excitations (UCCSD). k-UpCCGSD is found to show the best scaling for quantum computing applications, requiring a circuit depth of [Formula: see text], compared with [Formula: see text] for UCCGSD, and [Formula: see text] for UCCSD, where N is the number of spin orbitals and η is the number of electrons. We analyzed the accuracy of these three ansatze by making classical benchmark calculations on the ground state and the first excited state of H4 (STO-3G, 6-31G), H2O (STO-3G), and N2 (STO-3G), making additional comparisons to conventional coupled cluster methods. The results for ground states show that k-UpCCGSD offers a good trade-off between accuracy and cost, achieving chemical accuracy for lower cost of implementation on quantum computers than both UCCGSD and UCCSD. UCCGSD is also found to be more accurate than UCCSD but at a greater cost for implementation. Excited states are calculated with an orthogonally constrained variational quantum eigensolver approach. This is seen to generally yield less accurate energies than for the corresponding ground states. We demonstrate that using a specialized multideterminantal reference state constructed from classical linear response calculations allows these excited state energetics to be improved.

335 citations


Journal ArticleDOI
16 Aug 2019-Science
TL;DR: The discovery of spin-triplet superconductivity in UTe2, featuring a transition temperature of 1.6 kelvin and a very large and anisotropic upper critical field exceeding 40 teslas, suggests that UTe1 is related to ferromagnetic superconductors such as UGe2, URhGe, and UCoGe, however, the lack of magnetic order and the observation of quantum critical scaling place U Te2 at the paramagnetic end of this ferrom
Abstract: Spin-triplet superconductors potentially host topological excitations that are of interest for quantum information processing. We report the discovery of spin-triplet superconductivity in UTe2, featuring a transition temperature of 1.6 kelvin and a very large and anisotropic upper critical field exceeding 40 teslas. This superconducting phase stability suggests that UTe2 is related to ferromagnetic superconductors such as UGe2, URhGe, and UCoGe. However, the lack of magnetic order and the observation of quantum critical scaling place UTe2 at the paramagnetic end of this ferromagnetic superconductor series. A large intrinsic zero-temperature reservoir of ungapped fermions indicates a highly unconventional type of superconducting pairing.

323 citations


Journal ArticleDOI
01 Mar 2019-Nature
TL;DR: Angle-resolved photoemission spectroscopy measurements in CoSi reveal the presence of unconventional chiral fermions near the Fermi level, with giant surface Ferm i arcs and one pair of well separated chiral nodes.
Abstract: Chirality—the geometric property of objects that do not coincide with their mirror image—is found in nature, for example, in molecules, crystals, galaxies and life forms. In quantum field theory, the chirality of a massless particle is defined by whether the directions of its spin and motion are parallel or antiparallel. Although massless chiral fermions—Weyl fermions—were predicted 90 years ago, their existence as fundamental particles has not been experimentally confirmed. However, their analogues have been observed as quasiparticles in condensed matter systems. In addition to Weyl fermions1–4, theorists have proposed a number of unconventional (that is, beyond the standard model) chiral fermions in condensed matter systems5–8, but direct experimental evidence of their existence is still lacking. Here, by using angle-resolved photoemission spectroscopy, we reveal two types of unconventional chiral fermion—spin-1 and charge-2 fermions—at the band-crossing points near the Fermi level in CoSi. The projections of these chiral fermions on the (001) surface are connected by giant Fermi arcs traversing the entire surface Brillouin zone. These chiral fermions are enforced at the centre or corner of the bulk Brillouin zone by the crystal symmetries, making CoSi a system with only one pair of chiral nodes with large separation in momentum space and extremely long surface Fermi arcs, in sharp contrast to Weyl semimetals, which have multiple pairs of Weyl nodes with small separation. Our results confirm the existence of unconventional chiral fermions and provide a platform for exploring the physical properties associated with chiral fermions. Angle-resolved photoemission spectroscopy measurements in CoSi reveal the presence of unconventional chiral fermions near the Fermi level, with giant surface Fermi arcs and one pair of well separated chiral nodes.

291 citations


Journal ArticleDOI
01 Jan 2019-Nature
TL;DR: It is shown that antiferromagnets have richer spin Hall properties than do non-magnetic materials, and a magnetic contribution to the spin Hall effect is observed in the non-collinearantiferromagnet Mn3Sn, which is attributed to momentum-dependent spin splitting produced by non- Collinear magnetic order.
Abstract: The spin Hall effect (SHE)1–5 achieves coupling between charge currents and collective spin dynamics in magnetically ordered systems and is a key element of modern spintronics6–9. However, previous research has focused mainly on non-magnetic materials, so the magnetic contribution to the SHE is not well understood. Here we show that antiferromagnets have richer spin Hall properties than do non-magnetic materials. We find that in the non-collinear antiferromagnet10 Mn3Sn, the SHE has an anomalous sign change when its triangularly ordered moments switch orientation. We observe contributions to the SHE (which we call the magnetic SHE) and the inverse SHE (the magnetic inverse SHE) that are absent in non-magnetic materials and that can be dominant in some magnetic materials, including antiferromagnets. We attribute the dominance of this magnetic mechanism in Mn3Sn to the momentum-dependent spin splitting that is produced by non-collinear magnetic order. This discovery expands the horizons of antiferromagnet spintronics and spin–charge coupling mechanisms. A magnetic contribution to the spin Hall effect is observed in the non-collinear antiferromagnet Mn3Sn, which is attributed to momentum-dependent spin splitting produced by non-collinear magnetic order.

268 citations


Journal ArticleDOI
TL;DR: In this paper, the authors show how an exponentiation of Cachazo-Strominger soft factors can be used to find spin contributions to the aligned-spin scattering angle, conjecturally extending previously known results to higher orders in spin at one-loop order.
Abstract: We provide evidence that the classical scattering of two spinning black holes is controlled by the soft expansion of exchanged gravitons. We show how an exponentiation of Cachazo-Strominger soft factors, acting on massive higher-spin amplitudes, can be used to find spin contributions to the aligned-spin scattering angle, conjecturally extending previously known results to higher orders in spin at one-loop order. The extraction of the classical limit is accomplished via the on-shell leading-singularity method and using massive spinor-helicity variables. The three-point amplitude for arbitrary-spin massive particles minimally coupled to gravity is expressed in an exponential form, and in the infinite-spin limit it matches the effective stress-energy tensor of the linearized Kerr solution. A four-point gravitational Compton amplitude is obtained from an extrapolated soft theorem, equivalent to gluing two exponential three-point amplitudes, and becomes itself an exponential operator. The construction uses these amplitudes to: 1) recover the known tree-level scattering angle at all orders in spin, 2) recover the known one-loop linear-in-spin interaction, 3) match a previous conjectural expression for the one-loop scattering angle at quadratic order in spin, 4) propose new one-loop results through quartic order in spin. These connections link the computation of higher-multipole interactions to the study of deeper orders in the soft expansion.

264 citations


Journal ArticleDOI
23 Sep 2019-Nature
TL;DR: NMR spectroscopy of oxygen-17 reveals a drop of the Knight shift in the superconducting state, contradicting previous work and imposing tight constraints on the order parameter symmetry of the system.
Abstract: Phases of matter are usually identified through spontaneous symmetry breaking, especially regarding unconventional superconductivity and the interactions from which it originates. In that context, the superconducting state of the quasi-two-dimensional and strongly correlated perovskite Sr2RuO4 is considered to be the only solid-state analogue to the superfluid 3He-A phase1,2, with an odd-parity order parameter that is unidirectional in spin space for all electron momenta and breaks time-reversal symmetry. This characterization was recently called into question by a search for an expected 'split' transition in a Sr2RuO4 crystal under in-plane uniaxial pressure, which failed to find any such evidence; instead, a dramatic rise and a peak in a single-transition temperature were observed3,4. Here we use nuclear magnetic resonance (NMR) spectroscopy of oxygen-17, which is directly sensitive to the order parameter via hyperfine coupling to the electronic spin degrees of freedom, to probe the nature of superconductivity in Sr2RuO4 and its evolution under strain. A reduction of the Knight shift is observed for all strain values and at temperatures below the critical temperature, consistent with a drop in spin polarization in the superconducting state. In unstrained samples, our results contradict a body of previous NMR work reporting no change in the Knight shift5 and the most prevalent theoretical interpretation of the order parameter as a chiral p-wave state. Sr2RuO4 is an extremely clean layered perovskite and its superconductivity emerges from a strongly correlated Fermi liquid, and our work imposes tight constraints on the order parameter symmetry of this archetypal system.

261 citations


Journal ArticleDOI
TL;DR: A quantum heat engine based on a spin-1/2 system and nuclear magnetic resonance techniques is experimentally implemented, able to reach an efficiency for work extraction very close to its thermodynamic limit.
Abstract: Developments in the thermodynamics of small quantum systems envisage nonclassical thermal machines. In this scenario, energy fluctuations play a relevant role in the description of irreversibility. We experimentally implement a quantum heat engine based on a spin-1/2 system and nuclear magnetic resonance techniques. Irreversibility at a microscope scale is fully characterized by the assessment of energy fluctuations associated with the work and heat flows. We also investigate the efficiency lag related to the entropy production at finite time. The implemented heat engine operates in a regime where both thermal and quantum fluctuations (associated with transitions among the instantaneous energy eigenstates) are relevant to its description. Performing a quantum Otto cycle at maximum power, the proof-of-concept quantum heat engine is able to reach an efficiency for work extraction (η≈42%) very close to its thermodynamic limit (η=44%).

260 citations


Journal ArticleDOI
TL;DR: In this paper, a manifold of locally entangled spin states, representable by low-bond dimension matrix product states, and derive equations of motion for them using the time-dependent variational principle.
Abstract: We analyze quantum dynamics of strongly interacting, kinetically constrained many-body systems. Motivated by recent experiments demonstrating surprising long-lived, periodic revivals after quantum quenches in Rydberg atom arrays, we introduce a manifold of locally entangled spin states, representable by low-bond dimension matrix product states, and derive equations of motion for them using the time-dependent variational principle. We find that they feature isolated, unstable periodic orbits, which capture the recurrences and represent nonergodic dynamical trajectories. Our results provide a theoretical framework for understanding quantum dynamics in a class of constrained spin models, which allow us to examine the recently suggested explanation of "quantum many-body scarring" [Nat. Phys. 14, 745 (2018)NPAHAX1745-247310.1038/s41567-018-0137-5], and establish a possible connection to the corresponding phenomenon in chaotic single-particle systems.

253 citations


Journal ArticleDOI
TL;DR: In this article, the physics of electromagnetically and gravitationally coupled massive higher spin states from the on-shell point of view were explored, starting with the simplest amplitude characterized by matching to minimal coupling in the UV.
Abstract: In this paper, we explore the physics of electromagnetically and gravitationally coupled massive higher spin states from the on-shell point of view. Starting with the three-point amplitude, we focus on the simplest amplitude characterized by matching to minimal coupling in the UV. In the IR, for charged states this leads to g = 2 for arbitrary spin, and the leading deformation corresponds to the anomalous magnetic dipole moment. We proceed to construct the (gravitational) Compton amplitude for generic spins via consistent factorization. We find that in gravitation couplings, the leading deformation leads to inconsistent factorization. This implies that for systems with Gauge2 = Gravity relations, such as perturbative string theory, all charged states must have g = 2. It is then natural to ask for generic spin, what is the theory that yields such minimal coupling. By matching to the one body effective action, we verify that for large spins the answer is Kerr black holes. This identification is then an on-shell avatar of the no- hair theorem. Finally using this identification as well as the newly constructed Compton amplitudes, we proceed to compute the spin-dependent pieces for the classical potential at 2PM order up to degree four in spin operator of either black holes.

226 citations


Journal ArticleDOI
01 Dec 2019-Nature
TL;DR: The anomalous quantum Hall effect is observed in edge channels of topological insulators when there is a magnetic energy gap at the Dirac point; this gap has now been observed by low-temperature photoelectron spectroscopy in Mn-doped Bi2Te3.
Abstract: Magnetically doped topological insulators enable the quantum anomalous Hall effect (QAHE), which provides quantized edge states for lossless charge-transport applications1–8. The edge states are hosted by a magnetic energy gap at the Dirac point2, but hitherto all attempts to observe this gap directly have been unsuccessful. Observing the gap is considered to be essential to overcoming the limitations of the QAHE, which so far occurs only at temperatures that are one to two orders of magnitude below the ferromagnetic Curie temperature, TC (ref. 8). Here we use low-temperature photoelectron spectroscopy to unambiguously reveal the magnetic gap of Mn-doped Bi2Te3, which displays ferromagnetic out-of-plane spin texture and opens up only below TC. Surprisingly, our analysis reveals large gap sizes at 1 kelvin of up to 90 millielectronvolts, which is five times larger than theoretically predicted9. Using multiscale analysis we show that this enhancement is due to a remarkable structure modification induced by Mn doping: instead of a disordered impurity system, a self-organized alternating sequence of MnBi2Te4 septuple and Bi2Te3 quintuple layers is formed. This enhances the wavefunction overlap and size of the magnetic gap10. Mn-doped Bi2Se3 (ref. 11) and Mn-doped Sb2Te3 form similar heterostructures, but for Bi2Se3 only a nonmagnetic gap is formed and the magnetization is in the surface plane. This is explained by the smaller spin–orbit interaction by comparison with Mn-doped Bi2Te3. Our findings provide insights that will be crucial in pushing lossless transport in topological insulators towards room-temperature applications. In theory, the anomalous quantum Hall effect is observed in edge channels of topological insulators when there is a magnetic energy gap at the Dirac point; this gap has now been observed by low-temperature photoelectron spectroscopy in Mn-doped Bi2Te3.

Journal ArticleDOI
TL;DR: In this paper, the spin state of divacancy defects in silicon carbide via mechanical driving is manipulated using a stroboscopic X-ray diffraction imaging technique, which reveals the importance of shear strain for future device engineering and enhanced spin-mechanical coupling.
Abstract: Hybrid spin–mechanical systems provide a platform for integrating quantum registers and transducers. Efficient creation and control of such systems require a comprehensive understanding of the individual spin and mechanical components as well as their mutual interactions. Point defects in silicon carbide (SiC) offer long-lived, optically addressable spin registers in a wafer-scale material with low acoustic losses, making them natural candidates for integration with high-quality-factor mechanical resonators. Here, we show Gaussian focusing of a surface acoustic wave in SiC, characterized using a stroboscopic X-ray diffraction imaging technique, which delivers direct, strain amplitude information at nanoscale spatial resolution. Using ab initio calculations, we provide a more complete picture of spin–strain coupling for various defects in SiC with C3v symmetry. This reveals the importance of shear strain for future device engineering and enhanced spin–mechanical coupling. We demonstrate all-optical detection of acoustic paramagnetic resonance without microwave magnetic fields, relevant for sensing applications. Finally, we show mechanically driven Autler–Townes splittings and magnetically forbidden Rabi oscillations. These results offer a basis for full strain control of three-level spin systems. The authors use surface acoustic waves, focused in a Gaussian geometry, to manipulate the spin state of divacancy defects in silicon carbide via mechanical driving. They demonstrate that shear strain is important in controlling the spin transitions.

Journal ArticleDOI
TL;DR: This work unambiguously demonstrates experimentally the spin Hall effect in graphene induced by MoS2 proximity and for varying temperatures up to room temperature, paving the way toward the combination of spin information transport and spin-to-charge conversion in two-dimensional materials.
Abstract: Graphene is an excellent material for long-distance spin transport but allows little spin manipulation. Transition-metal dichalcogenides imprint their strong spin–orbit coupling into graphene via the proximity effect, and it has been predicted that efficient spin-to-charge conversion due to spin Hall and Rashba–Edelstein effects could be achieved. Here, by combining Hall probes with ferromagnetic electrodes, we unambiguously demonstrate experimentally the spin Hall effect in graphene induced by MoS2 proximity and for varying temperatures up to room temperature. The fact that spin transport and the spin Hall effect occur in different parts of the same material gives rise to a hitherto unreported efficiency for the spin-to-charge voltage output. Additionally, for a single graphene/MoS2 heterostructure-based device, we evidence a superimposed spin-to-charge current conversion that can be indistinguishably associated with either the proximity-induced Rashba–Edelstein effect in graphene or the spin Hall effect...

Journal ArticleDOI
TL;DR: Significant advances have been made towards fault-tolerant operation of silicon spin qubits, with single qubit fidelities exceeding 99.9%, several demonstrations of two-qubit gates based on exchange coupling, and the achievement of coherent single spin-photon coupling.
Abstract: Significant advances have been made towards fault-tolerant operation of silicon spin qubits, with single qubit fidelities exceeding 99.9%, several demonstrations of two-qubit gates based on exchange coupling, and the achievement of coherent single spin-photon coupling. Coupling arbitrary pairs of spatially separated qubits in a quantum register poses a significant challenge as most qubit systems are constrained to two dimensions with nearest neighbor connectivity. For spins in silicon, new methods for quantum state transfer should be developed to achieve connectivity beyond nearest-neighbor exchange. Here we demonstrate shuttling of a single electron across a linear array of nine series-coupled silicon quantum dots in ~50 ns via a series of pairwise interdot charge transfers. By constructing more complex pulse sequences we perform parallel shuttling of two and three electrons at a time through the array. These experiments demonstrate a scalable approach to physically transporting single electrons across large silicon quantum dot arrays. As quantum computers grow in complexity the challenge of moving information between physically separated qubits becomes more pressing. Mills et al. demonstrate transfer of single electrons across an array of nine silicon quantum dots three orders of magnitude faster than spin qubit decoherence times.

Journal ArticleDOI
01 Apr 2019
TL;DR: In this paper, a spin tunnel field effect transistors (TFETs) based on dual-gated graphene/CrI3/graphene tunnel junctions are presented. But their performance is limited.
Abstract: A transistor based on spin rather than charge—a spin transistor—could potentially offer non-volatile data storage and improved performance compared with traditional transistors. Many approaches have been explored to realize spin transistors, but their development remains a considerable challenge. The recent discovery of two-dimensional magnetic insulators such as chromium triiodide (CrI3), which offer electrically switchable magnetic order and an effective spin filtering effect, can provide new operating principles for spin transistors. Here, we report spin tunnel field-effect transistors (TFETs) based on dual-gated graphene/CrI3/graphene tunnel junctions. The devices exhibit an ambipolar behaviour and tunnel conductance that is dependent on the magnetic order in the CrI3 tunnel barrier. The gate voltage switches the tunnel barrier between interlayer antiferromagnetic and ferromagnetic states under a constant magnetic bias near the spin-flip transition, thus effectively and reversibly altering the device between a low and a high conductance state, with large hysteresis. By electrically controlling the magnetization configurations instead of the spin current, our spin TFETs achieve a high–low conductance ratio approaching 400%, suggesting they could be of value in the development of non-volatile memory applications. A tunnel field-effect transistor with spin-dependent outputs that are voltage controllable and reversible can be created using a dual-gated graphene/CrI3/graphene tunnel junction.

Journal ArticleDOI
TL;DR: It is shown that a self-consistent treatment of the nature of spin transport in the integrable XXZ spin chain gives superdiffusion, with an effective time-dependent diffusion constant that scales as D(t)∼t^{1/3}.
Abstract: We address the nature of spin transport in the integrable XXZ spin chain, focusing on the isotropic Heisenberg limit. We calculate the diffusion constant using a kinetic picture based on generalized hydrodynamics combined with Gaussian fluctuations: we find that it diverges, and show that a self-consistent treatment of this divergence gives superdiffusion, with an effective time-dependent diffusion constant that scales as D(t)∼t^{1/3}. This exponent had previously been observed in large-scale numerical simulations, but had not been theoretically explained. We briefly discuss XXZ models with easy-axis anisotropy Δ>1. Our method gives closed-form expressions for the diffusion constant D in the infinite-temperature limit for all Δ>1. We find that D saturates at large anisotropy, and diverges as the Heisenberg limit is approached, as D∼(Δ-1)^{-1/2}.

Journal ArticleDOI
TL;DR: Theoretical models of spin liquids are collective phases of quantum matter that have eluded discovery in correlated magnetic materials for over half a century as mentioned in this paper, and they have been studied in a wide range of applications.
Abstract: Spin liquids are collective phases of quantum matter that have eluded discovery in correlated magnetic materials for over half a century. Theoretical models of these enigmatic topological phases ar...

Journal ArticleDOI
TL;DR: In this article, the authors studied the link between classical scattering of spinning black holes and quantum amplitudes for massive spin-s$ particles, and derived the spin-exponentiated structure of the relevant tree-level amplitude from minimal coupling to Einstein's gravity.
Abstract: We study the link between classical scattering of spinning black holes and quantum amplitudes for massive spin-$s$ particles. Generic spin orientations of the black holes are considered, allowing their spins to be deflected on par with their momenta. We rederive the spin-exponentiated structure of the relevant tree-level amplitude from minimal coupling to Einstein's gravity, which in the $s\ensuremath{\rightarrow}\ensuremath{\infty}$ limit generates the black holes' complete series of spin-induced multipoles. The resulting scattering function is seen to encode in a simple way the known net changes in the black-hole momenta and spins at first post-Minkowskian order. We connect our findings to a rigorous framework developed elsewhere for computing such observables from amplitudes.

Journal ArticleDOI
TL;DR: This work experimentally demonstrates for the first time charge-to-spin conversion due to the REE in a monolayer WS2-graphene van der Waals heterostructure, providing a clear indication of induced Rashba and valley-Zeeman SOC in graphene that lead to the generation of spin accumulation and spin current without using ferromagnetic electrodes.
Abstract: The proximity of a transition-metal dichalcogenide (TMD) to graphene imprints a rich spin texture in graphene and complements its high-quality charge/spin transport by inducing spin-orbit coupling (SOC). Rashba and valley-Zeeman SOCs are the origin of charge-to-spin conversion mechanisms such as the Rashba-Edelstein effect (REE) and spin Hall effect (SHE). In this work, we experimentally demonstrate for the first time charge-to-spin conversion due to the REE in a monolayer WS2-graphene van der Waals heterostructure. We measure the current-induced spin polarization up to room temperature and control it by a gate electric field. Our observation of the REE and the inverse of the effect (IREE) is accompanied by the SHE, which we discriminate by symmetry-resolved spin precession under oblique magnetic fields. These measurements also allow for the quantification of the efficiencies of charge-to-spin conversion by each of the two effects. These findings are a clear indication of induced Rashba and valley-Zeeman SOC in graphene that lead to the generation of spin accumulation and spin current without using ferromagnetic electrodes. These realizations have considerable significance for spintronic applications, providing accessible routes toward all-electrical spin generation and manipulation in two-dimensional materials.

Journal ArticleDOI
25 Apr 2019
TL;DR: In this paper, the authors extend the hydrodynamic theory for quantum and classical integrable models to account for diffusive dynamics and local entropy production, and show that the diffusion is due to scattering processes among quasiparticles, which are only present in truly interacting systems.
Abstract: We extend beyond the Euler scales the hydrodynamic theory for quantum and classical integrable models developed in recent years, accounting for diffusive dynamics and local entropy production. We review how the diffusive scale can be reached via a gradient expansion of the expectation values of the conserved fields and how the coefficients of the expansion can be computed via integrated steady-state two-point correlation functions, emphasising that PT-symmetry can fully fix the inherent ambiguity in the definition of conserved fields at the diffusive scale. We develop a form factor expansion to compute such correlation functions and we show that, while the dynamics at the Euler scale is completely determined by the density of single quasiparticle excitations on top of the local steady state, diffusion is due to scattering processes among quasiparticles, which are only present in truly interacting systems. We then show that only two-quasiparticle scattering processes contribute to the diffusive dynamics. Finally we employ the theory to compute the exact spin diffusion constant of a gapped XXZ spin-1/2 chain at finite temperature and half-filling, where we show that spin transport is purely diffusive.

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate single-shot read-out of a two-electron spin state with an average fidelity of >98% in 6?s by means of an on-chip superconducting resonator connected to two of the gates defining the double dot structure.
Abstract: Silicon spin qubits are one of the leading platforms for quantum computation1,2. As with any qubit implementation, a crucial requirement is the ability to measure individual quantum states rapidly and with high fidelity. Since the signal from a single electron spin is minute, the different spin states are converted to different charge states3,4. Charge detection, so far, has mostly relied on external electrometers5?7, which hinders scaling to two-dimensional spin qubit arrays2,8,9. Alternatively, gate-based dispersive read-out based on off-chip lumped element resonators has been demonstrated10?13, but integration times of 0.2?2 ms were required to achieve single-shot read-out14?16. Here, we connect an on-chip superconducting resonant circuit to two of the gates that confine electrons in a double quantum dot. Measurement of the power transmitted through a feedline coupled to the resonator probes the charge susceptibility, distinguishing whether or not an electron can oscillate between the dots in response to the probe power. With this approach, we achieve a signal-to-noise ratio of about six within an integration time of only 1 ?s. Using Pauli?s exclusion principle for spin-to-charge conversion, we demonstrate single-shot read-out of a two-electron spin state with an average fidelity of >98% in 6 ?s. This result may form the basis of frequency-multiplexed read-out in dense spin qubit systems without external electrometers, therefore simplifying the system architecture. ? 2019, The Author(s), under exclusive licence to Springer Nature Limited.The spin state of electrons in a double quantum dot in silicon is read in a single shot with 98% average fidelity within 6 ?s by means of an on-chip superconducting resonator connected to two of the gates defining the double dot structure.

Journal ArticleDOI
TL;DR: This work reports that the assumption that spin pumping is the dominant mechanism affecting this dependence of the effective spin-mixing conductance fails badly in many in-plane magnetized prototypical HM-FM systems in the nanometer-scale thickness regime.
Abstract: The effective spin-mixing conductance (G_{eff}^{↑↓}) of a heavy-metal-ferromagnet (HM-FM) interface characterizes the efficiency of the interfacial spin transport. Accurately determining G_{eff}^{↑↓} is critical to the quantitative understanding of measurements of direct and inverse spin Hall effects. G_{eff}^{↑↓} is typically ascertained from the inverse dependence of magnetic damping on the FM thickness under the assumption that spin pumping is the dominant mechanism affecting this dependence. We report that this assumption fails badly in many in-plane magnetized prototypical HM-FM systems in the nanometer-scale thickness regime. Instead, the majority of the damping is from two-magnon scattering at the FM interface, while spin-memory-loss scattering at the interface can also be significant. If these two effects are neglected, the results will be an unphysical "giant" apparent G_{eff}^{↑↓} and hence considerable underestimation of both the spin Hall ratio and the spin Hall conductivity in inverse or direct spin Hall experiments.

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate microwave-mediated spin-spin interactions between two electrons that are physically separated by more than 4 mm and demonstrate that microwave-frequency photons can be used as a resource to generate long-range two-qubit gates between spatially separated spins.
Abstract: Entangling gates for electron spins in semiconductor quantum dots are generally based on exchange, a short-ranged interaction that requires wavefunction overlap. Coherent spin-photon coupling raises the prospect of using photons as long-distance interconnects for spin qubits. Realizing a key milestone for spin-based quantum information processing, we demonstrate microwave-mediated spin-spin interactions between two electrons that are physically separated by more than 4 mm. Coherent spin-photon coupling is demonstrated for each individual spin using microwave transmission spectroscopy. An enhanced vacuum Rabi splitting is observed when both spins are tuned into resonance with the cavity, indicative of a coherent spin-spin interaction. Our results demonstrate that microwave-frequency photons can be used as a resource to generate long-range two-qubit gates between spatially separated spins.

Journal ArticleDOI
TL;DR: This work suggests that a strong spin current with spin polarization transverse to the magnetization can be generated within a ferromagnet, despite spin dephasing, and reports the observation of a counterpart of the AHE that is term the anomalous spin–orbit torque (ASOT), wherein an electric current parallel to the Magnetization generates opposite spin– orbit torques on the surfaces of the magnetic film.
Abstract: The spin Hall effect couples charge and spin transport1–3, enabling electrical control of magnetization4,5. A quintessential example of spin-Hall-related transport is the anomalous Hall effect (AHE)6, first observed in 1880, in which an electric current perpendicular to the magnetization in a magnetic film generates charge accumulation on the surfaces. Here, we report the observation of a counterpart of the AHE that we term the anomalous spin–orbit torque (ASOT), wherein an electric current parallel to the magnetization generates opposite spin–orbit torques on the surfaces of the magnetic film. We interpret the ASOT as being due to a spin-Hall-like current generated with an efficiency of 0.053 ± 0.003 in Ni80Fe20, comparable to the spin Hall angle of Pt7. Similar effects are also observed in other common ferromagnetic metals, including Co, Ni and Fe. First-principles calculations corroborate the order of magnitude of the measured values. This work suggests that a strong spin current with spin polarization transverse to the magnetization can be generated within a ferromagnet, despite spin dephasing8. The large magnitude of the ASOT should be taken into consideration when investigating spin–orbit torques in ferromagnetic/non-magnetic bilayers. In a ferromagnetic layer, an electric current parallel to the magnetization generates opposite spin–orbit torques on the two surfaces of the magnetic film, which is attributed to the generation of spin currents with a spin polarization transverse to the magnetization within the ferromagnet.

Journal ArticleDOI
TL;DR: In this article, a single solid-state spin memory integrated in a nanophotonic diamond resonator is used to implement asynchronous Bell-state measurements, which enables a four-fold increase in the secret key rate of measurement device independent (MDI)-QKD over the loss-equivalent direct-transmission method while operating megahertz clock rates.
Abstract: The ability to communicate quantum information over long distances is of central importance in quantum science and engineering. For example, it enables secure quantum key distribution (QKD) relying on fundamental principles that prohibit the "cloning" of unknown quantum states. While QKD is being successfully deployed, its range is currently limited by photon losses and cannot be extended using straightforward measure-and-repeat strategies without compromising its unconditional security. Alternatively, quantum repeaters, which utilize intermediate quantum memory nodes and error correction techniques, can extend the range of quantum channels. However, their implementation remains an outstanding challenge, requiring a combination of efficient and high-fidelity quantum memories, gate operations, and measurements. Here we report the experimental realization of memory-enhanced quantum communication. We use a single solid-state spin memory integrated in a nanophotonic diamond resonator to implement asynchronous Bell-state measurements. This enables a four-fold increase in the secret key rate of measurement device independent (MDI)-QKD over the loss-equivalent direct-transmission method while operating megahertz clock rates. Our results represent a significant step towards practical quantum repeaters and large-scale quantum networks.

Journal ArticleDOI
TL;DR: In this article, the authors reported the unprecedented coexistence of multiple high-field reentrant superconducting phases in the spin-triplet superconductor UTe2.
Abstract: Applied magnetic fields underlie exotic quantum states, such as the fractional quantum Hall effect and Bose-Einstein condensation of spin excitations. Superconductivity, on the other hand, is inherently antagonistic towards magnetic fields. Only in rare cases can these effects be mitigated over limited fields, leading to reentrant superconductivity. Here, we report the unprecedented coexistence of multiple high-field reentrant superconducting phases in the spin-triplet superconductor UTe2. Strikingly, we observe superconductivity in the highest magnetic field range identified for any reentrant superconductor, beyond 65 T. These extreme properties reflect a new kind of exotic superconductivity rooted in magnetic fluctuations and boosted by a quantum dimensional crossover.

Journal ArticleDOI
TL;DR: A critical width is found, below which the exchange interaction suppresses the dipolar pinning phenomenon and changes the quantization criterion for thespin-wave eigenmodes and results in a pronounced modification of the spin-wave characteristics.
Abstract: Spin waves are investigated in yttrium iron garnet waveguides with a thickness of 39 nm and widths ranging down to 50 nm, i.e., with an aspect ratio thickness over width approaching unity, using Brillouin light scattering spectroscopy. The experimental results are verified by a semianalytical theory and micromagnetic simulations. A critical width is found, below which the exchange interaction suppresses the dipolar pinning phenomenon. This changes the quantization criterion for the spin-wave eigenmodes and results in a pronounced modification of the spin-wave characteristics. The presented semianalytical theory allows for the calculation of spin-wave mode profiles and dispersion relations in nanostructures.

Journal ArticleDOI
TL;DR: It is proved that in a situation with one magnetic lead, the other lead will become magnetized and this results from the interplay between the spin-orbit coupling in the chiral molecule and the magnetized lead.
Abstract: A general theory of the chiral induced spin selectivity (CISS) effect is presented. It is based on the fact that the spin–orbit (SO) coupling is small, a few meV, for the light atoms, which make up...

Journal ArticleDOI
01 Dec 2019
TL;DR: In this article, the authors discuss how quantum states of matter, such as Dirac materials and complex magnetic order, can be created bottom-up by patterning individual atoms on surfaces and subsequently characterized with scanning tunnelling microscopy and spectroscopy.
Abstract: Advances in high-resolution and spin-resolved scanning tunnelling microscopy, as well as atomic-scale manipulation, have enabled the bottom-up, atom-by-atom creation and characterization of quantum states of matter. This capability is largely based on controlling the particle-like or wave-like nature of electrons and the interactions between spins, electrons and orbitals, as well as their interplay with structure and dimensionality. In this Review, we describe recent progress in using a scanning tunnelling microscope to create artificial electronic and spin lattices that lead to various exotic quantum phases of matter, ranging from topological Dirac dispersion to complex magnetic order. We also offer our perspective on the future directions of this developing field, namely the exploration of non-equilibrium dynamics, engineering quantum phase transitions and topology, prototype technologies and the general concept in nature of evolution of complexity from simplicity. In this Review, we discuss how quantum states of matter, such as Dirac materials and complex magnetic order, can be created bottom-up by patterning individual atoms on surfaces and subsequently characterized with scanning tunnelling microscopy and spectroscopy.

Journal ArticleDOI
TL;DR: This work demonstrates spin wave control using natural anisotropic features of magnetic order in an interlayer exchange-coupled ferromagnetic bilayer and shows routes towards the practical implementation of magnonic waveguides in the form of domain walls in future spin wave logic and computational circuits.
Abstract: Spin waves offer intriguing perspectives for computing and signal processing, because their damping can be lower than the ohmic losses in conventional complementary metal–oxide–semiconductor (CMOS) circuits. Magnetic domain walls show considerable potential as magnonic waveguides for on-chip control of the spatial extent and propagation of spin waves. However, low-loss guidance of spin waves with nanoscale wavelengths and around angled tracks remains to be shown. Here, we demonstrate spin wave control using natural anisotropic features of magnetic order in an interlayer exchange-coupled ferromagnetic bilayer. We employ scanning transmission X-ray microscopy to image the generation of spin waves and their propagation across distances exceeding multiples of the wavelength. Spin waves propagate in extended planar geometries as well as along straight or curved one-dimensional domain walls. We observe wavelengths between 1 μm and 150 nm, with excitation frequencies ranging from 250 MHz to 3 GHz. Our results show routes towards the practical implementation of magnonic waveguides in the form of domain walls in future spin wave logic and computational circuits. Sub-micrometre spin waves are excited in anisotropic spin textures and they can propagate as 2D plane waves over several micrometres and as 1D waves along curved domain walls.