scispace - formally typeset
Search or ask a question
Topic

Spin-½

About: Spin-½ is a research topic. Over the lifetime, 40423 publications have been published within this topic receiving 796639 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a semi-polar representation of the spin operators is introduced, which makes possible, in the harmonic approximation, the definition of magnons for any wavelength at low temperature in one-dimensional or two-dimensional magnetic systems without long-range order, provided they are of the planar type.
Abstract: A « semi-polar » representation of the spin operators is introduced, which makes possible, in the harmonic approximation, the definition of magnons for any wavelength at low temperature in one-dimensional (= 1-D) or two-dimensional (= 2-D) magnetic systems without long-range order, provided they are of the « planar » type, i. e. they have an easy magnetization plane. The semi-polar representation is used to calculate the spin pair correlation function at low temperature. Its space-time Fourier transform (directly observable by neutron scattering) consists of a relatively broad peak due to spin fluctuations inside the easy plane, plus a narrower peak due to out-of-plane fluctuations. The intensity, width and lineshape of both peaks are calculated in both 1-D and 2-D cases for all momentum transfers, as well as the frequency shift as a function of temperature.

213 citations

Journal ArticleDOI
TL;DR: In this article, the interplay of frustration and strong electronic correlations in quasi-two-dimensional organic charge transfer salts, such as (BEDT-TTF)2X and EtnMe4−nPn[Pd(dmit)2]2] has been discussed.
Abstract: We review the interplay of frustration and strong electronic correlations in quasi-two-dimensional organic charge transfer salts, such as (BEDT-TTF)2X and EtnMe4−nPn[Pd(dmit)2]2. These two forces drive a range of exotic phases including spin liquids, valence bond crystals, pseudogapped metals and unconventional superconductivity. Of particular interest is that in several materials pressure drives a first-order transition from a spin liquid Mott insulating state to a superconducting state. Experiments on these materials raise a number of profound questions about the quantum behaviour of frustrated systems, particularly the intimate connection between spin liquids and superconductivity. Insights into these questions have come from a wide range of theoretical techniques including first principles electronic structure, quantum many-body theory and quantum field theory. In this review we introduce some of the basic ideas of the field by discussing a simple frustrated Heisenberg model with four spins. We then describe the key experimental results, emphasizing that for two materials, κ-(BEDT-TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2, there is strong evidence for a spin liquid ground state, and for another, EtMe3P[Pd(dmit)2]2, there is evidence of a valence bond crystal ground state. We review theoretical attempts to explain these phenomena, arguing that they can be captured by a Hubbard model on the anisotropic triangular lattice at half filling, and that resonating valence bond wavefunctions capture most of the essential physics. We review evidence that this Hubbard model can have a spin liquid ground state for a range of parameters that are realistic for the relevant materials. In particular, spatial anisotropy and ring exchange are key to destabilizing magnetic order. We conclude by summarizing the progress made thus far and identifying some of the key questions still to be answered.

213 citations


Network Information
Related Topics (5)
Ground state
70K papers, 1.5M citations
96% related
Phase transition
82.8K papers, 1.6M citations
94% related
Quantum
60K papers, 1.2M citations
92% related
Electron
111.1K papers, 2.1M citations
91% related
Excited state
102.2K papers, 2.2M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202234
20212,352
20201,787
20191,748
20181,696
20171,621