scispace - formally typeset
Search or ask a question
Topic

Spin canting

About: Spin canting is a research topic. Over the lifetime, 856 publications have been published within this topic receiving 24032 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Giant and isotropic magnetoresistance as huge as −53% was observed in magnetic manganese oxide La0.72Ca0.25MnOz films with an intrinsic antiferromagnetic spin structure as mentioned in this paper.
Abstract: Giant and isotropic magnetoresistance as huge as −53% was observed in magnetic manganese oxide La0.72Ca0.25MnOz films with an intrinsic antiferromagnetic spin structure. We ascribe this magnetoresistance to spin‐dependent electron scattering due to spin canting of the manganese oxide.

995 citations

Journal ArticleDOI
TL;DR: In this article, structural and magnetic properties of isometric nanoparticles ranging from 3 to 14 nm with a narrow particle size distribution have been studied, and it has been shown that there is a strong dependence on the average crystallite size.
Abstract: Structural and magnetic properties of γ-Fe2O3 have been studied in isometric nanoparticles ranging from 3 to 14 nm with a narrow particle size distribution. Cation vacancy order is observed for particles larger than 5 nm in diameter giving rise to a cubic superstructure, while for the smallest particles these vacancies are disordered. All magnetic properties measured showed a strong dependence on the average crystallite size. For the ordered samples, saturation magnetization was found to decrease linearly with decreasing crystallite size due to a surface spin canting effect. However, a stronger decrease was observed in the disordered samples, suggesting that also an internal spin canting (cation vacancy order−disorder) has to be taken into account to explain the magnetic properties of nanoparticles. The room-temperature coercive field decreases with decreasing crystallite size; however at low temperatures, the coercivity increases as the size decreases, reaching values larger than 3000 Oe. A model to expl...

599 citations

Journal ArticleDOI
TL;DR: This critical review provides an overview of the various framework-structured weak ferromagnets based on different grades of ligands (from mono-atom to three-atom-like ligands) and the relationships between structural features and the properties, rational employment of the ligands, andWeak ferromagnetic strategies for molecule-based magnets with exciting properties and applications.
Abstract: Framework-structured weak ferromagnets are new rising stars in molecule-based magnetic materials. The framework structures are powerful carriers for long-range ordering of spins. And weak ferromagnetism due to spin canting is an effective approach for magnets because of its frequent occurrence and desired spontaneous magnetization as long as the canting angle γ is large enough. In this critical review, we provide an overview of the various framework-structured weak ferromagnets based on different grades of ligands (from mono-atom to three-atom-like ligands). Particular emphasis is given to the relationships between structural features and the properties, rational employment of the ligands, and weak ferromagnetic strategies for molecule-based magnets with exciting properties and applications (273 references).

363 citations

Journal ArticleDOI
TL;DR: In this paper, the average grain size and the root mean square strain were estimated from the x-ray diffraction line broadening, and the lattice parameter initially decreases slightly with milling and it increases with further milling.
Abstract: Nanostructured ZnFe2O4 ferrites with different grain sizes were prepared by high energy ball milling for various milling times. Both the average grain size and the root mean square strain were estimated from the x-ray diffraction line broadening. The lattice parameter initially decreases slightly with milling and it increases with further milling. The magnetization is found to increase as the grain size decreases and its large value is attributed to the cation inversion associated with grain size reduction. The Fe-57 Mossbauer spectra were recorded at 300 K and 77 K for the samples with grain sizes of 22 and 11 nm. There is no evidence for the presence of the Fe2+ charge state. At 77 K the Mossbauer spectra consist of a magnetically ordered component along with a doublet due to the superparamagnetic behaviour of small crystalline grains with the superparamagnetic component decreasing with grain size reduction. At 4.2 K the sample with 11 nm grain size displays a magnetically blocked state as revealed by the Mossbauer spectrum. The Mossbauer spectrum of this sample recorded at 10 K in an external magnetic field of 6 T applied parallel to the direction of gamma rays clearly shows ferrimagnetic ordering of the sample. Also, the sample exhibits spin canting with a large canting angle, maybe due to a spin-glass-like surface layer or grain boundary anisotropies in the material.

339 citations

Journal ArticleDOI
TL;DR: First-principles calculations indicate that the canted antiferromagnetic ordering with two nonequivalent spin pairs is responsible for this extraordinary polarization and that the reverse Dzyaloshinskii-Moriya interaction dominates over the exchange-striction mechanism in the manifestation of the improper ferroelectricity.
Abstract: SmFeO3, a family of centrosymmetric rare-earth orthoferrites, is known to be nonferroelectric. However, we have found that SmFeO3 is surprisingly ferroelectric at room temperature with a small polarization along the b axis of Pbnm. First-principles calculations indicate that the canted antiferromagnetic ordering with two nonequivalent spin pairs is responsible for this extraordinary polarization and that the reverse Dzyaloshinskii-Moriya interaction dominates over the exchange-striction mechanism in the manifestation of the improper ferroelectricity. SmFeO3 further exhibits an interesting phenomenon of spontaneous magnetization reversal at cryogenic temperatures. This reversal is attributed to the activation of the Sm-spin moment which is antiparallel to the Fe-spin moment below ∼5 K.

337 citations


Network Information
Related Topics (5)
Band gap
86.8K papers, 2.2M citations
90% related
Magnetization
107.8K papers, 1.9M citations
89% related
Photoluminescence
83.4K papers, 1.8M citations
87% related
Quantum dot
76.7K papers, 1.9M citations
86% related
Raman spectroscopy
122.6K papers, 2.8M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202311
202232
202145
202047
201931
201842