scispace - formally typeset


Spin wave

About: Spin wave is a(n) research topic. Over the lifetime, 14470 publication(s) have been published within this topic receiving 329641 citation(s).

More filters
01 Jan 1981
Abstract: 1. Introductory Material.- 1.1. Harmonic Oscillators and Phonons.- 1.2. Second Quantization for Particles.- 1.3. Electron - Phonon Interactions.- A. Interaction Hamiltonian.- B. Localized Electron.- C. Deformation Potential.- D. Piezoelectric Interaction.- E. Polar Coupling.- 1.4. Spin Hamiltonians.- A. Homogeneous Spin Systems.- B. Impurity Spin Models.- 1.5. Photons.- A. Gauges.- B. Lagrangian.- C. Hamiltonian.- 1.6. Pair Distribution Function.- Problems.- 2. Green's Functions at Zero Temperature.- 2.1. Interaction Representation.- A. Schrodinger.- B. Heisenberg.- C. Interaction.- 2.2. S Matrix.- 2.3. Green's Functions.- 2.4. Wick's Theorem.- 2.5. Feynman Diagrams.- 2.6. Vacuum Polarization Graphs.- 2.7. Dyson's Equation.- 2.8. Rules for Constructing Diagrams.- 2.9. Time-Loop S Matrix.- A. Six Green's Functions.- B. Dyson's Equation.- 2.10. Photon Green's Functions.- Problems.- 3. Green's Functions at Finite Temperatures.- 3.1. Introduction.- 3.2. Matsubara Green's Functions.- 3.3. Retarded and Advanced Green's Functions.- 3.4. Dyson's Equation.- 3.5. Frequency Summations.- 3.6. Linked Cluster Expansions.- A. Thermodynamic Potential.- B. Green's Functions.- 3.7. Real Time Green's Functions.- Wigner Distribution Function.- 3.8. Kubo Formula for Electrical Conductivity.- A. Transverse Fields, Zero Temperature.- B. Finite Temperatures.- C. Zero Frequency.- D. Photon Self-Energy.- 3.9. Other Kubo Formulas.- A. Pauli Paramagnetic Susceptibility.- B. Thermal Currents and Onsager Relations.- C. Correlation Functions.- Problems.- 4. Exactly Solvable Models.- 4.1. Potential Scattering.- A. Reaction Matrix.- B. T Matrix.- C. Friedel's Theorem.- D. Phase Shifts.- E. Impurity Scattering.- F. Ground State Energy.- 4.2. Localized State in the Continuum.- 4.3. Independent Boson Models.- A. Solution by Canonical Transformation.- B. Feynman Disentangling of Operators.- C. Einstein Model.- D. Optical Absorption and Emission.- E. Sudden Switching.- F. Linked Cluster Expansion.- 4.4. Tomonaga Model.- A. Tomonaga Model.- B. Spin Waves.- C. Luttinger Model.- D. Single-Particle Properties.- E. Interacting System of Spinless Fermions.- F. Electron Exchange.- 4.5. Polaritons.- A. Semiclassical Discussion.- B. Phonon-Photon Coupling.- C. Exciton-Photon Coupling.- Problems.- 5. Electron Gas.- 5.1. Exchange and Correlation.- A. Kinetic Energy.- B. Direct Coulomb.- C. Exchange.- D. Seitz' Theorem.- E. ?(2a).- F. ?(2b).- G. ?(2c).- H. High-Density Limit.- I. Pair Distribution Function.- 5.2. Wigner Lattice and Metallic Hydrogen.- Metallic Hydrogen.- 5.3. Cohesive Energy of Metals.- 5.4. Linear Screening.- 5.5. Model Dielectric Functions.- A. Thomas-Fermi.- B. Lindhard, or RPA.- C. Hubbard.- D. Singwi-Sjolander.- 5.6. Properties of the Electron Gas.- A. Pair Distribution Function.- B. Screening Charge.- C. Correlation Energies.- D. Compressibility.- 5.7. Sum Rules.- 5.8. One-Electron Properties.- A. Renormalization Constant ZF.- B. Effective Mass.- C. Pauli Paramagnetic Susceptibility.- D. Mean Free Path.- Problems.- 6. Electron-Phonon Interaction.- 6.1 Frohlich Hamiltonian.- A. Brillouin-Wigner Perturbation Theory.- B. Rayleigh-Schrodinger Perturbation Theory.- C. Strong Coupling Theory.- D. Linked Cluster Theory.- 6.2 Small Polaron Theory.- A. Large Polarons.- B. Small Polarons.- C. Diagonal Transitions.- D. Nondiagonal Transitions.- E. Dispersive Phonons.- F. Einstein Model.- G. Kubo Formula.- 6.3 Heavily Doped Semiconductors.- A. Screened Interaction.- B. Experimental Verifications.- C. Electron Self-Energies.- 6.4 Metals.- A. Phonons in Metals.- B. Electron Self-Energies.- Problems.- 7. dc Conductivities.- 7.1. Electron Scattering by Impurities.- A. Boltzmann Equation.- B. Kubo Formula: Approximate Solution.- C. Kubo Formula: Rigorous Solution.- D. Ward Identities.- 7.2. Mobility of Frohlich Polarons.- A. Single-Particle Properties.- B. ??1 Term in the Mobility.- 7.3. Electron-Phonon Interactions in Metals.- A. Force-Force Correlation Function.- B. Kubo Formula.- C. Mass Enhancement.- D. Thermoelectric Power.- 7.4. Quantum Boltzmann Equation.- A. Derivation of the Quantum Boltzmann Equation.- B. Gradient Expansion.- C. Electron Scattering by Impurities.- D. T2 Contribution to the Electrical Resistivity.- Problems.- 8. Optical Properties of Solids.- 8.1. Nearly Free-Electron System.- A. General Properties.- B. Force-Force Correlation Functions.- C. Frohlich Polarons.- D. Interband Transitions.- E. Phonons.- 8.2. Wannier Excitons.- A. The Model.- B. Solution by Green's Functions.- C. Core-Level Spectra.- 8.3. X-Ray Spectra in Metals.- A. Physical Model.- B. Edge Singularities.- C. Orthogonality Catastrophe.- D. MND Theory.- E. XPS Spectra.- Problems.- 9. Superconductivity.- 9.1. Cooper Instability.- 9.2. BCS Theory.- 9.3. Electron Tunneling.- A. Tunneling Hamiltonian.- B. Normal Metals.- C. Normal-Superconductor.- D. Two Superconductors.- E. Josephson Tunneling.- 9.4. Infrared Absorption.- 9.5. Acoustic Attenuation.- 9.6. Excitons in Superconductors.- 9.7. Strong Coupling Theory.- Problems.- 10. Liquid Helium.- 10.1. Pairing Theory.- A. Hartree and Exchange.- B. Bogoliubov Theory of 4He.- 10.2. 4He: Ground State Properties.- A. Off-Diagonal Long-Range Order.- B. Correlated Basis Functions.- C. Experiments on nk.- 10.3. 4He: Excitation Spectrum.- A. Bijl-Feynman Theory.- B. Improved Excitation Spectra.- C. Superfluidity.- 10.4. 3He: Normal Liquid.- A. Fermi Liquid Theory.- B. Experiments and Microscopic Theories.- C. Interaction between Quasiparticles: Excitations.- D. Quasiparticle Transport.- 10.5. Superfluid 3He.- A. Triplet Pairing.- B. Equal Spin Pairing.- Problems.- 11. Spin Fluctuations.- 11.1. Kondo Model.- A. High-Temperature Scattering.- B. Low-Temperature State.- C. Kondo Temperature.- 11.2. Anderson Model.- A. Collective States.- B. Green's Functions.- C. Spectroscopies.- Problems.- References.- Author Index.

5,806 citations

Journal ArticleDOI
TL;DR: Graphene is converted from an ideal two-dimensional semimetallic state to a quantum spin Hall insulator and the spin and charge conductances in these edge states are calculated and the effects of temperature, chemical potential, Rashba coupling, disorder, and symmetry breaking fields are discussed.
Abstract: We study the effects of spin orbit interactions on the low energy electronic structure of a single plane of graphene. We find that in an experimentally accessible low temperature regime the symmetry allowed spin orbit potential converts graphene from an ideal two-dimensional semimetallic state to a quantum spin Hall insulator. This novel electronic state of matter is gapped in the bulk and supports the transport of spin and charge in gapless edge states that propagate at the sample boundaries. The edge states are nonchiral, but they are insensitive to disorder because their directionality is correlated with spin. The spin and charge conductances in these edge states are calculated and the effects of temperature, chemical potential, Rashba coupling, disorder, and symmetry breaking fields are discussed.

5,158 citations

Journal ArticleDOI
Abstract: The interaction between spin waves and itinerant electrons is considerably enhanced in the vicinity of an interface between normal and ferromagnetic layers in metallic thin films. This leads to a local increase of the Gilbert damping parameter which characterizes spin dynamics. When a dc current crosses this interface, stimulated emission of spin waves is predicted to take place. Beyond a certain critical current density, the spin damping becomes negative; a spontaneous precession of the magnetization is predicted to arise. This is the magnetic analog of the injection laser. An extra dc voltage appears across the interface, given by an expression similar to that for the Josephson voltage across a superconducting junction. \textcopyright{} 1996 The American Physical Society.

4,172 citations

Journal ArticleDOI
Abstract: A single configuration model containing nonorthogonal magnetic orbitals is developed to represent the important features of the antiferromagnetic state of a transition metal dimer. A state of mixed spin symmetry and lowered space symmetry is constructed which has both conceptual and practical computational value. Either unrestricted Hartree–Fock theory or spin polarized density functional theory, e.g., Xα theory, can be used to generate the mixed spin state wave function. The most important consequence of the theory is that the Heisenberg exchange coupling constant J can be calculated simply from the energies of the mixed spin state and the highest pure spin multiplet.

2,093 citations

Journal ArticleDOI
Abstract: Zener has suggested a type of interaction between the spins of magnetic ions which he named "double exchange." This occurs indirectly by means of spin coupling to mobile electrons which travel from one ion to the next. We have calculated this interaction for a pair of ions with general spin $S$ and with general transfer integral, $b$, and internal exchange integral $J$.One result is that while the states of large total spin have both the highest and lowest energies, their average energy is the same as for the states of low total spin. This should be applicable in the high-temperature expansion of the susceptibility, and if it is, indicates that the high-temperature Curie-Weiss constant $\ensuremath{\theta}$ should be zero, and $\frac{1}{\ensuremath{\chi}}$ vs $T$ a curved line. This is surprising in view of the fact that the manganites, in which double exchange has been presumed to be the interaction mechanism, obey a fairly good Curie-Weiss law.The results can be approximated rather well by a simple semiclassical model in which the spins of the ion cores are treated classically. This model is capable of rather easy extension to the problem of the whole crystal, but the resulting mathematical problem is not easily solved except in special circumstances, e.g., periodic disturbances (spin waves).

2,000 citations

Network Information
Related Topics (5)

107.8K papers, 1.9M citations

94% related
Band gap

86.8K papers, 2.2M citations

89% related
Ground state

70K papers, 1.5M citations

87% related
Quantum dot

76.7K papers, 1.9M citations

87% related

111.1K papers, 2.1M citations

87% related
No. of papers in the topic in previous years