scispace - formally typeset
Search or ask a question
Topic

Spliceosome

About: Spliceosome is a research topic. Over the lifetime, 2921 publications have been published within this topic receiving 162300 citations.


Papers
More filters
Journal ArticleDOI
20 Feb 2009-Cell
TL;DR: The spliceosome exhibits exceptional compositional and structural dynamics that are exploited during substrate-dependent complex assembly, catalytic activation, and active site remodeling in the pre-mRNAs.

2,316 citations

Journal ArticleDOI
TL;DR: The extensive interplay of RNA and proteins in aligning the pre-mRNA's reactive groups, and the presence of both RNA and protein at the core of the splicing machinery, suggest that the spliceosome is an RNP enzyme, but elucidation of the precise nature of its active site awaits the generation of a high-resolution structure of its RNP core.
Abstract: Pre-mRNA splicing is catalyzed by the spliceosome, a multimegadalton ribonucleoprotein (RNP) complex comprised of five snRNPs and numerous proteins. Intricate RNA-RNA and RNP networks, which serve to align the reactive groups of the pre-mRNA for catalysis, are formed and repeatedly rearranged during spliceosome assembly and catalysis. Both the conformation and composition of the spliceosome are highly dynamic, affording the splicing machinery its accuracy and flexibility, and these remarkable dynamics are largely conserved between yeast and metazoans. Because of its dynamic and complex nature, obtaining structural information about the spliceosome represents a major challenge. Electron microscopy has revealed the general morphology of several spliceosomal complexes and their snRNP subunits, and also the spatial arrangement of some of their components. X-ray and NMR studies have provided high resolution structure information about spliceosomal proteins alone or complexed with one or more binding partners. The extensive interplay of RNA and proteins in aligning the pre-mRNA's reactive groups, and the presence of both RNA and protein at the core of the splicing machinery, suggest that the spliceosome is an RNP enzyme. However, elucidation of the precise nature of the spliceosome's active site, awaits the generation of a high-resolution structure of its RNP core.

1,436 citations

Journal ArticleDOI
20 Sep 1996-Science
TL;DR: The structure indicates the extent of RNA packing required for the function of large ribozymes, the spliceosome, and the ribosome.
Abstract: Group I self-splicing introns catalyze their own excision from precursor RNAs by way of a two-step transesterification reaction. The catalytic core of these ribozymes is formed by two structural domains. The 2.8-angstrom crystal structure of one of these, the P4-P6 domain of the Tetrahymena thermophila intron, is described. In the 160-nucleotide domain, a sharp bend allows stacked helices of the conserved core to pack alongside helices of an adjacent region. Two specific long-range interactions clamp the two halves of the domain together: a two-Mg2+-coordinated adenosine-rich corkscrew plugs into the minor groove of a helix, and a GAAA hairpin loop binds to a conserved 11-nucleotide internal loop. Metal- and ribose-mediated backbone contacts further stabilize the close side-by-side helical packing. The structure indicates the extent of RNA packing required for the function of large ribozymes, the spliceosome, and the ribosome.

1,209 citations

Journal ArticleDOI
TL;DR: The mechanism postulates that chemical catalysis is facilitated by two divalent metal ions 3.9 A apart, as in phosphoryl transfer reactions catalyzed by protein enzymes, such as the 3',5'-exonuclease of Escherichia coli DNA polymerase I.
Abstract: A mechanism is proposed for the RNA-catalyzed reactions involved in RNA splicing and RNase P hydrolysis of precursor tRNA. The mechanism postulates that chemical catalysis is facilitated by two divalent metal ions 3.9 A apart, as in phosphoryl transfer reactions catalyzed by protein enzymes, such as the 3',5'-exonuclease of Escherichia coli DNA polymerase I. One metal ion activates the attacking water or sugar hydroxyl, while the other coordinates and stabilizes the oxyanion leaving group. Both ions act as Lewis acids and stabilize the expected pentacovalent transition state. The symmetry of a two-metal-ion catalytic site fits well with the known reaction pathway of group I self-splicing introns and can also be reconciled with emerging data on group II self-splicing introns, the spliceosome, and RNase P. The role of the RNA is to position the two catalytic metal ions and properly orient the substrates via three specific binding sites.

1,089 citations

Journal ArticleDOI
TL;DR: The number of new proteins emerging with no prior connection to splicing was surprising and it would be premature to label these proteins as bona fide splicing factors, yet many were identified multiple times in complexes purified under diverse conditions or from different organisms.

1,020 citations


Network Information
Related Topics (5)
Regulation of gene expression
85.4K papers, 5.8M citations
92% related
Transcription factor
82.8K papers, 5.4M citations
92% related
RNA
111.6K papers, 5.4M citations
90% related
Signal transduction
122.6K papers, 8.2M citations
87% related
Gene
211.7K papers, 10.3M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023182
2022250
2021178
2020170
2019172
2018175