scispace - formally typeset
Search or ask a question
Topic

Split-radix FFT algorithm

About: Split-radix FFT algorithm is a research topic. Over the lifetime, 1845 publications have been published within this topic receiving 41398 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Good generalized these methods and gave elegant algorithms for which one class of applications is the calculation of Fourier series, applicable to certain problems in which one must multiply an N-vector by an N X N matrix which can be factored into m sparse matrices.
Abstract: An efficient method for the calculation of the interactions of a 2' factorial ex- periment was introduced by Yates and is widely known by his name. The generaliza- tion to 3' was given by Box et al. (1). Good (2) generalized these methods and gave elegant algorithms for which one class of applications is the calculation of Fourier series. In their full generality, Good's methods are applicable to certain problems in which one must multiply an N-vector by an N X N matrix which can be factored into m sparse matrices, where m is proportional to log N. This results inma procedure requiring a number of operations proportional to N log N rather than N2. These methods are applied here to the calculation of complex Fourier series. They are useful in situations where the number of data points is, or can be chosen to be, a highly composite number. The algorithm is here derived and presented in a rather different form. Attention is given to the choice of N. It is also shown how special advantage can be obtained in the use of a binary computer with N = 2' and how the entire calculation can be performed within the array of N data storage locations used for the given Fourier coefficients. Consider the problem of calculating the complex Fourier series N-1 (1) X(j) = EA(k)-Wjk, j = 0 1, * ,N- 1, k=0

11,795 citations

Journal ArticleDOI
TL;DR: This paper observes that one of the standard interpolation or "gridding" schemes, based on Gaussians, can be accelerated by a significant factor without precomputation and storage of the interpolation weights, of particular value in two- and three- dimensional settings.
Abstract: The nonequispaced Fourier transform arises in a variety of application areas, from medical imaging to radio astronomy to the numerical solution of partial differential equations. In a typical problem, one is given an irregular sampling of N data in the frequency domain and one is interested in reconstructing the corresponding function in the physical domain. When the sampling is uniform, the fast Fourier transform (FFT) allows this calculation to be computed in O(N log N ) operations rather than O(N 2 ) operations. Unfortunately, when the sampling is nonuniform, the FFT does not apply. Over the last few years, a number of algorithms have been developed to overcome this limitation and are often referred to as nonuniform FFTs (NUFFTs). These rely on a mixture of interpolation and the judicious use of the FFT on an oversampled grid (A. Dutt and V. Rokhlin, SIAM J. Sci. Comput., 14 (1993), pp. 1368-1383). In this paper, we observe that one of the standard interpolation or "gridding" schemes, based on Gaussians, can be accelerated by a significant factor without precomputation and storage of the interpolation weights. This is of particular value in two- and three- dimensional settings, saving either 10 d N in storage in d dimensions or a factor of about 5-10 in CPUtime (independent of dimension).

714 citations

Journal ArticleDOI
28 Aug 2000-Wear
TL;DR: In this article, Discrete convolution and FFT (DC-FFT) is adopted instead of the method of continuous convolutions and Fourier transform for the contact problems.

613 citations

Journal ArticleDOI
R. Singleton1
TL;DR: This paper presents an algorithm for computing the fast Fourier transform, based on a method proposed by Cooley and Tukey, and includes an efficient method for permuting the results in place.
Abstract: This paper presents an algorithm for computing the fast Fourier transform, based on a method proposed by Cooley and Tukey. As in their algorithm, the dimension n of the transform is factored (if possible), and n/p elementary transforms of dimension p are computed for each factor p of n . An improved method of computing a transform step corresponding to an odd factor of n is given; with this method, the number of complex multiplications for an elementary transform of dimension p is reduced from (p-1)^{2} to (p-1)^{2}/4 for odd p . The fast Fourier transform, when computed in place, requires a final permutation step to arrange the results in normal order. This algorithm includes an efficient method for permuting the results in place. The algorithm is described mathematically and illustrated by a FORTRAN subroutine.

534 citations

Journal ArticleDOI
TL;DR: A new implementation of the real-valued split-radix FFT is presented, an algorithm that uses fewer operations than any otherreal-valued power-of-2-length FFT.
Abstract: This tutorial paper describes the methods for constructing fast algorithms for the computation of the discrete Fourier transform (DFT) of a real-valued series. The application of these ideas to all the major fast Fourier transform (FFT) algorithms is discussed, and the various algorithms are compared. We present a new implementation of the real-valued split-radix FFT, an algorithm that uses fewer operations than any other real-valued power-of-2-length FFT. We also compare the performance of inherently real-valued transform algorithms such as the fast Hartley transform (FHT) and the fast cosine transform (FCT) to real-valued FFT algorithms for the computation of power spectra and cyclic convolutions. Comparisons of these techniques reveal that the alternative techniques always require more additions than a method based on a real-valued FFT algorithm and result in computer code of equal or greater length and complexity.

489 citations


Network Information
Related Topics (5)
Signal processing
73.4K papers, 983.5K citations
80% related
Filter (signal processing)
81.4K papers, 1M citations
78% related
Robustness (computer science)
94.7K papers, 1.6M citations
78% related
Iterative method
48.8K papers, 1.2M citations
77% related
Optimization problem
96.4K papers, 2.1M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20239
202234
20192
20188
201748
201689