scispace - formally typeset
Search or ask a question
Topic

SQL

About: SQL is a research topic. Over the lifetime, 13782 publications have been published within this topic receiving 243849 citations. The topic is also known as: Structural Query Language & SQL.


Papers
More filters
Proceedings ArticleDOI
03 Jun 2002
TL;DR: This paper shows that XML's ordered data model can indeed be efficiently supported by a relational database system, and proposes three order encoding methods that can be used to represent XML order in the relational data model, and also proposes algorithms for translating ordered XPath expressions into SQL using these encoding methods.
Abstract: XML is quickly becoming the de facto standard for data exchange over the Internet. This is creating a new set of data management requirements involving XML, such as the need to store and query XML documents. Researchers have proposed using relational database systems to satisfy these requirements by devising ways to "shred" XML documents into relations, and translate XML queries into SQL queries over these relations. However, a key issue with such an approach, which has largely been ignored in the research literature, is how (and whether) the ordered XML data model can be efficiently supported by the unordered relational data model. This paper shows that XML's ordered data model can indeed be efficiently supported by a relational database system. This is accomplished by encoding order as a data value. We propose three order encoding methods that can be used to represent XML order in the relational data model, and also propose algorithms for translating ordered XPath expressions into SQL using these encoding methods. Finally, we report the results of an experimental study that investigates the performance of the proposed order encoding methods on a workload of ordered XML queries and updates.

2,402 citations

Proceedings ArticleDOI
30 May 1979
TL;DR: System R as mentioned in this paper is an experimental database management system developed to carry out research on the relational model of data, which chooses access paths for both simple (single relation) and complex queries (such as joins), given a user specification of desired data as a boolean expression of predicates.
Abstract: In a high level query and data manipulation language such as SQL, requests are stated non-procedurally, without reference to access paths. This paper describes how System R chooses access paths for both simple (single relation) and complex queries (such as joins), given a user specification of desired data as a boolean expression of predicates. System R is an experimental database management system developed to carry out research on the relational model of data. System R was designed and built by members of the IBM San Jose Research Laboratory.

2,082 citations

Proceedings ArticleDOI
Christopher Olston1, Benjamin Reed1, Utkarsh Srivastava1, Ravi Kumar1, Andrew Tomkins1 
09 Jun 2008
TL;DR: A new language called Pig Latin is described, designed to fit in a sweet spot between the declarative style of SQL, and the low-level, procedural style of map-reduce, which is an open-source, Apache-incubator project, and available for general use.
Abstract: There is a growing need for ad-hoc analysis of extremely large data sets, especially at internet companies where innovation critically depends on being able to analyze terabytes of data collected every day. Parallel database products, e.g., Teradata, offer a solution, but are usually prohibitively expensive at this scale. Besides, many of the people who analyze this data are entrenched procedural programmers, who find the declarative, SQL style to be unnatural. The success of the more procedural map-reduce programming model, and its associated scalable implementations on commodity hardware, is evidence of the above. However, the map-reduce paradigm is too low-level and rigid, and leads to a great deal of custom user code that is hard to maintain, and reuse.We describe a new language called Pig Latin that we have designed to fit in a sweet spot between the declarative style of SQL, and the low-level, procedural style of map-reduce. The accompanying system, Pig, is fully implemented, and compiles Pig Latin into physical plans that are executed over Hadoop, an open-source, map-reduce implementation. We give a few examples of how engineers at Yahoo! are using Pig to dramatically reduce the time required for the development and execution of their data analysis tasks, compared to using Hadoop directly. We also report on a novel debugging environment that comes integrated with Pig, that can lead to even higher productivity gains. Pig is an open-source, Apache-incubator project, and available for general use.

2,058 citations

Posted Content
TL;DR: The cube operator as discussed by the authors generalizes the histogram, cross-tabulation, roll-up, drill-down, and sub-total constructs found in most report writers, and treats each of the N aggregation attributes as a dimension of N-space.
Abstract: Data analysis applications typically aggregate data across many dimensions looking for anomalies or unusual patterns. The SQL aggregate functions and the GROUP BY operator produce zero-dimensional or one-dimensional aggregates. Applications need the N-dimensional generalization of these operators. This paper defines that operator, called the data cube or simply cube. The cube operator generalizes the histogram, cross-tabulation, roll-up, drill-down, and sub-total constructs found in most report writers. The novelty is that cubes are relations. Consequently, the cube operator can be imbedded in more complex non-procedural data analysis programs. The cube operator treats each of the N aggregation attributes as a dimension of N-space. The aggregate of a particular set of attribute values is a point in this space. The set of points forms an N-dimensional cube. Super-aggregates are computed by aggregating the N-cube to lower dimensional spaces. This paper (1) explains the cube and roll-up operators, (2) shows how they fit in SQL, (3) explains how users can define new aggregate functions for cubes, and (4) discusses efficient techniques to compute the cube. Many of these features are being added to the SQL Standard.

1,870 citations

Journal ArticleDOI
06 May 2011
TL;DR: This paper examines a number of SQL and socalled "NoSQL" data stores designed to scale simple OLTP-style application loads over many servers, and contrasts the new systems on their data model, consistency mechanisms, storage mechanisms, durability guarantees, availability, query support, and other dimensions.
Abstract: In this paper, we examine a number of SQL and socalled "NoSQL" data stores designed to scale simple OLTP-style application loads over many servers. Originally motivated by Web 2.0 applications, these systems are designed to scale to thousands or millions of users doing updates as well as reads, in contrast to traditional DBMSs and data warehouses. We contrast the new systems on their data model, consistency mechanisms, storage mechanisms, durability guarantees, availability, query support, and other dimensions. These systems typically sacrifice some of these dimensions, e.g. database-wide transaction consistency, in order to achieve others, e.g. higher availability and scalability.

1,412 citations


Network Information
Related Topics (5)
Web page
50.3K papers, 975.1K citations
87% related
Web service
57.6K papers, 989K citations
86% related
Software
130.5K papers, 2M citations
86% related
Server
79.5K papers, 1.4M citations
84% related
Graph (abstract data type)
69.9K papers, 1.2M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023342
2022644
2021389
2020645
2019850
2018885