scispace - formally typeset
Search or ask a question
Topic

SRT1720

About: SRT1720 is a research topic. Over the lifetime, 81 publications have been published within this topic receiving 11282 citations.


Papers
More filters
Journal ArticleDOI
15 Dec 2006-Cell
TL;DR: RSV's effects were associated with an induction of genes for oxidative phosphorylation and mitochondrial biogenesis and were largely explained by an RSV-mediated decrease in P GC-1alpha acetylation and an increase in PGC-1 alpha activity.

3,740 citations

Journal ArticleDOI
TL;DR: It is demonstrated that SIRT1, a nicotinamide adenosine dinucleotide‐dependent histone deacetylase, regulates the transcriptional activity of NF‐κB and activity augments apoptosis in response to TNFα.
Abstract: NF‐κB is responsible for upregulating gene products that control cell survival. In this study, we demonstrate that SIRT1, a nicotinamide adenosine dinucleotide‐dependent histone deacetylase, regulates the transcriptional activity of NF‐κB. SIRT1, the mammalian ortholog of the yeast SIR2 (Silencing Information Regulator) and a member of the Sirtuin family, has been implicated in modulating transcriptional silencing and cell survival. SIRT1 physically interacts with the RelA/p65 subunit of NF‐κB and inhibits transcription by deacetylating RelA/p65 at lysine 310. Treatment of cells with resveratrol, a small‐molecule agonist of Sirtuin activity, potentiates chromatin‐associated SIRT1 protein on the cIAP‐2 promoter region, an effect that correlates with a loss of NF‐κB‐regulated gene expression and sensitization of cells to TNFα‐induced apoptosis. While SIRT1 is capable of protecting cells from p53‐induced apoptosis, our work provides evidence that SIRT1 activity augments apoptosis in response to TNFα by the ability of the deacetylase to inhibit the transactivation potential of the RelA/p65 protein.

2,437 citations

Journal ArticleDOI
29 Nov 2007-Nature
TL;DR: These compounds bind to the SIRT1 enzyme–peptide substrate complex at an allosteric site amino-terminal to the catalytic domain and lower the Michaelis constant for acetylated substrates and improve whole-body glucose homeostasis and insulin sensitivity in adipose tissue, skeletal muscle and liver.
Abstract: Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases of ageing such as type 2 diabetes. SIRT1, an NAD+-dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produce beneficial effects on glucose homeostasis and insulin sensitivity. Resveratrol, a polyphenolic SIRT1 activator, mimics the anti-ageing effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance, increases mitochondrial content, and prolongs survival. Here we describe the identification and characterization of small molecule activators of SIRT1 that are structurally unrelated to, and 1,000-fold more potent than, resveratrol. These compounds bind to the SIRT1 enzyme-peptide substrate complex at an allosteric site amino-terminal to the catalytic domain and lower the Michaelis constant for acetylated substrates. In diet-induced obese and genetically obese mice, these compounds improve insulin sensitivity, lower plasma glucose, and increase mitochondrial capacity. In Zucker fa/fa rats, hyperinsulinaemic-euglycaemic clamp studies demonstrate that SIRT1 activators improve whole-body glucose homeostasis and insulin sensitivity in adipose tissue, skeletal muscle and liver. Thus, SIRT1 activation is a promising new therapeutic approach for treating diseases of ageing such as type 2 diabetes.

1,614 citations

Journal ArticleDOI
TL;DR: It is concluded that SRT1720, its structurally related compounds SRT2183 and SRT1460, and resveratrol are not direct activators of SIRT1, which exhibits multiple off-target activities against receptors, enzymes, transporters, and ion channels.

862 citations

Journal ArticleDOI
TL;DR: The metabolic phenotype of mice treated with SRT1720, a specific and potent synthetic activator of SIRT1 that is devoid of direct action on AMPK that robustly enhances endurance running performance and strongly protects from diet-induced obesity and insulin resistance by enhancing oxidative metabolism in skeletal muscle, liver, and brown adipose tissue is reported.

702 citations

Network Information
Related Topics (5)
Oxidative stress
86.5K papers, 3.8M citations
80% related
Apoptosis
115.4K papers, 4.8M citations
80% related
Inflammation
76.4K papers, 4M citations
77% related
Cell growth
104.2K papers, 3.7M citations
77% related
Programmed cell death
60.5K papers, 3.8M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20216
20207
201911
20187
20176
20166