scispace - formally typeset
Search or ask a question
Topic

Stackelberg competition

About: Stackelberg competition is a research topic. Over the lifetime, 6611 publications have been published within this topic receiving 109213 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that spectrum sensing can significantly improve the C-MVNO's expected profit and users' payoffs, and it is proved that these properties hold for general SNR regime and general continuous distributions of sensing uncertainty.
Abstract: This paper studies the optimal investment and pricing decisions of a cognitive mobile virtual network operator (C-MVNO) under spectrum supply uncertainty. Compared with a traditional MVNO who often leases spectrum via long-term contracts, a C-MVNO can acquire spectrum dynamically in short-term by both sensing the empty “spectrum holes” of licensed bands and dynamically leasing from the spectrum owner. As a result, a C-MVNO can make flexible investment and pricing decisions to match demands of the secondary unlicensed users. Compared to dynamic spectrum leasing, spectrum sensing is typically cheaper, but the obtained useful spectrum amount is random due to primary licensed users' stochastic traffic. The C-MVNO needs to determine the optimal amounts of spectrum sensing and leasing by evaluating the trade-off between cost and uncertainty. The C-MVNO also needs to determine the optimal price to sell the spectrum to the secondary unlicensed users, taking into account wireless heterogeneity of users such as different maximum transmission power levels and channel gains. We model and analyze the interactions between the C-MVNO and secondary unlicensed users as a Stackelberg game. We show several interesting properties of the network equilibrium, including threshold structures of the optimal investment and pricing decisions, the independence of the optimal price on users' wireless characteristics, and guaranteed fair and predictable QoS among users. We prove that these properties hold for general SNR regime and general continuous distributions of sensing uncertainty. We show that spectrum sensing can significantly improve the C-MVNO's expected profit and users' payoffs.

160 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a decentralized federated learning (FL) framework that considers the communication efficiency during parameters exchange and formulated a Stackelberg game to find the game's equilibria.
Abstract: Federated learning (FL) rests on the notion of training a global model in a decentralized manner. Under this setting, mobile devices perform computations on their local data before uploading the required updates to improve the global model. However, when the participating clients implement an uncoordinated computation strategy, the difficulty is to handle the communication efficiency (i.e., the number of communications per iteration) while exchanging the model parameters during aggregation. Therefore, a key challenge in FL is how users participate to build a high-quality global model with communication efficiency. We tackle this issue by formulating a utility maximization problem, and propose a novel crowdsourcing framework to leverage FL that considers the communication efficiency during parameters exchange. First, we show an incentive-based interaction between the crowdsourcing platform and the participating client's independent strategies for training a global learning model, where each side maximizes its own benefit. We formulate a two-stage Stackelberg game to analyze such scenario and find the game's equilibria. Second, we formalize an admission control scheme for participating clients to ensure a level of local accuracy. Simulated results demonstrate the efficacy of our proposed solution with up to 22% gain in the offered reward.

159 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigate Stackelberg mixed duopoly models where a state-owned public firm and a foreign private firm compete and examine a desirable role (either leader or follower) of the public firm.
Abstract: We investigate Stackelberg mixed duopoly models where a state-owned public firm and a foreign private firm compete. We examine a desirable role (either leader or follower) of the public firm. We also consider endogenous roles by adopting the observable delay game of Hamilton and Slutsky (1990). We find that, in contrast to Pal (1998) discussing a case of domestic competitors, the public firm should be the leader and that it becomes the leader in the endogenous role game. We also find that in contrast to Ono (1990) eliminating a foreign firm does not improve domestic welfare in mixed oligopolies.

158 citations

Proceedings Article
25 Jul 2015
TL;DR: Green Security Games (GSGs) is introduced, a novel game model for green security domains with a generalized Stackelberg assumption; algorithms to plan effective sequential defender strategies are provided; a novel approach to learn adversary models that further improves defender performance is proposed.
Abstract: Building on the successful applications of Stackelberg Security Games (SSGs) to protect infrastructure, researchers have begun focusing on applying game theory to green security domains such as protection of endangered animals and fish stocks. Previous efforts in these domains optimize defender strategies based on the standard Stackelberg assumption that the adversaries become fully aware of the defender's strategy before taking action. Unfortunately, this assumption is inappropriate since adversaries in green security domains often lack the resources to fully track the defender strategy. This paper (i) introduces Green Security Games (GSGs), a novel game model for green security domains with a generalized Stackelberg assumption; (ii) provides algorithms to plan effective sequential defender strategies -- such planning was absent in previous work; (iii) proposes a novel approach to learn adversary models that further improves defender performance; and (iv) provides detailed experimental analysis of proposed approaches.

157 citations

Posted Content
TL;DR: The maximum sum-rate point on the boundary of the MAC capacity region is shown to be the unique Nash equilibrium of the corresponding water-filling game, which sheds a new light on the opportunistic communication principle.
Abstract: We adopt a game theoretic approach for the design and analysis of distributed resource allocation algorithms in fading multiple access channels. The users are assumed to be selfish, rational, and limited by average power constraints. We show that the sum-rate optimal point on the boundary of the multipleaccess channel capacity region is the unique Nash Equilibrium of the corresponding water-filling game. This result sheds a new light on the opportunistic communication principle and argues for the fairness of the sum-rate optimal point, at least from a game theoretic perspective. The base-station is then introduced as a player interested in maximizing a weighted sum of the individual rates. We propose a Stackelberg formulation in which the base-station is the designated game leader. In this set-up, the base-station announces first its strategy defined as the decoding order of the different users, in the successive cancellation receiver, as a function of the channel state. In the second stage, the users compete conditioned on this particular decoding strategy. We show that this formulation allows for achieving all the corner points of the capacity region, in addition to the sum-rate optimal point. On the negative side, we prove the non-existence of a base-station strategy in this formulation that achieves the rest of the boundary points. To overcome this limitation, we present a repeated game approach which achieves the capacity region of the fading multiple access channel. Finally, we extend our study to vector channels highlighting interesting differences between this scenario and the scalar channel case.

156 citations


Network Information
Related Topics (5)
Scheduling (computing)
78.6K papers, 1.3M citations
84% related
Optimization problem
96.4K papers, 2.1M citations
83% related
Supply chain
84.1K papers, 1.7M citations
81% related
Markov chain
51.9K papers, 1.3M citations
78% related
Network packet
159.7K papers, 2.2M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023551
20221,041
2021563
2020557
2019582
2018487