scispace - formally typeset
Search or ask a question
Topic

Stackelberg competition

About: Stackelberg competition is a research topic. Over the lifetime, 6611 publications have been published within this topic receiving 109213 citations.


Papers
More filters
Journal ArticleDOI
M. Le Treust1, Samson Lasaulce1
TL;DR: Both analytical and simulation results are provided to compare the performance of the proposed power control policies with those already existing and exploiting the same information assumptions namely, those derived for the one-shot and Stackelberg games.
Abstract: Decentralized multiple access channels where each transmitter wants to selfishly maximize this transmission energy-efficiency are considered. Transmitters are assumed to choose freely their power control policy and interact (through multiuser interference) several times. It is shown that the corresponding conflict of interest can have a predictable outcome, namely a finitely or discounted repeated game equilibrium. Remarkably, it is shown that this equilibrium is Pareto-efficient under reasonable sufficient conditions and the corresponding decentralized power control policies can be implemented under realistic information assumptions: only individual channel state information and a public signal are required to implement the equilibrium strategies. Explicit equilibrium conditions are derived in terms of minimum number of game stages or maximum discount factor. Both analytical and simulation results are provided to compare the performance of the proposed power control policies with those already existing and exploiting the same information assumptions namely, those derived for the one-shot and Stackelberg games.

105 citations

Journal ArticleDOI
TL;DR: In this paper, a game theory-based pricing model is proposed in a localized Practical Byzantine Fault Tolerance based-Consortium Blockchain (PBFT-CB), where both the interactions between seller and buyer and the interactions among sellers are considered.

105 citations

Journal ArticleDOI
TL;DR: The performance of the system at a Stackelberg equilibrium is found to be much better than that at a Nash equilibrium, and a sufficient condition is given for its convergence.
Abstract: This paper considers the problem of downlink power allocation in an orthogonal frequency-division multiple access (OFDMA) cellular network with macrocells underlaid with femtocells. The femto-access points (FAPs) and the macro-base stations (MBSs) in the network are assumed to compete with each other to maximize their capacity under power constraints. This competition is captured in the framework of a Stackelberg game with the MBSs as the leaders and the FAPs as the followers. The leaders are assumed to have foresight enough to consider the responses of the followers while formulating their own strategies. The Stackelberg equilibrium is introduced as the solution of the Stackelberg game, and it is shown to exist under some mild assumptions. The game is expressed as a mathematical program with equilibrium constraints (MPEC), and the best response for a one leader-multiple follower game is derived. The best response is also obtained when a quality-of-service constraint is placed on the leader. Orthogonal power allocation between leader and followers is obtained as a special case of this solution under high interference. These results are used to build algorithms to iteratively calculate the Stackelberg equilibrium, and a sufficient condition is given for its convergence. The performance of the system at a Stackelberg equilibrium is found to be much better than that at a Nash equilibrium.

104 citations

Journal ArticleDOI
TL;DR: In this article, the authors considered the fact that trade credit can not only attract new buyers but also avoid lasting price competition, and they derived the necessary and sufficient conditions to obtain the optimal solution for both the vendor and the buyer under non-cooperative Stackelberg equilibrium.

104 citations


Network Information
Related Topics (5)
Scheduling (computing)
78.6K papers, 1.3M citations
84% related
Optimization problem
96.4K papers, 2.1M citations
83% related
Supply chain
84.1K papers, 1.7M citations
81% related
Markov chain
51.9K papers, 1.3M citations
78% related
Network packet
159.7K papers, 2.2M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023551
20221,041
2021563
2020557
2019582
2018487