scispace - formally typeset
Search or ask a question
Topic

Stacking-fault energy

About: Stacking-fault energy is a research topic. Over the lifetime, 2984 publications have been published within this topic receiving 105350 citations.


Papers
More filters
Book
01 Jan 1968
TL;DR: Dislocations in Isotropic Continua: Effects of Crystal Structure on Dislocations and Dislocation-Point-Defect Interactions at Finite temperatures.
Abstract: Dislocations in Isotropic Continua. Effects of Crystal Structure on Dislocations. Dislocation-Point-Defect Interactions at Finite Temperatures. Groups of Dislocations. Appendixes. Author and Subject Indexes.

10,220 citations

Journal ArticleDOI
TL;DR: In this paper, the formation of twins, α- and e- martensite during plastic deformation was analyzed by optical microscopy, X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscope (TEM).

1,570 citations

Journal ArticleDOI
Sébastien Allain1, J.-P. Chateau1, Olivier Bouaziz2, S. Migot1, N. Guelton2 
TL;DR: In this article, a model for the evaluation of stacking fault energy (SFE) in Fe-Mn-C austenitic alloys, at different temperatures, was proposed, where the Gibbs energy due to the antiferromagnetic to paramagnetic transition was also taken into account.
Abstract: A model is proposed for the evaluation of the stacking fault energy (SFE) in Fe–Mn–C austenitic alloys, at different temperatures. It accounts for the variation of the Gibbs energy of each element during the austenite to e martensite transformation, plus their interactions. The Gibbs energy due to the antiferromagnetic to paramagnetic transition is also taken into account. The required data have been obtained from the literature. The result shows a decrease of the SFE with temperature, with a saturation below the austenite Neel temperature. The result agrees with the mechanical and thermal martensitic transformation limits proposed by Schumann. The plasticity mechanisms depend on the SFE. The mechanical martensitic transformation occurs below 18 mJ/m 2 , and twinning between 12 and 35 mJ/m 2 , in agreement with the tensile tests and the deformation microstructures observed in an Fe–22 wt.% Mn–0.6 wt.% C alloy at 77, 293 and 693 K.

1,002 citations

Journal ArticleDOI
TL;DR: In this paper, the microstructural properties of advanced high strength and supra-ductile TRIP and TWIP steels with high-manganese concentrations (15 to 25 mass%) and additions of aluminum and silicon (2 to 4mass%) were investigated as a function of temperature (−196 to 400°C) and strain rate (10−4≤e≤103 s−1).
Abstract: The microstructural properties of advanced high strength and supra-ductile TRIP and TWIP steels with high-manganese concentrations (15 to 25 mass%) and additions of aluminum and silicon (2 to 4mass%) were investigated as a function of temperature (−196 to 400°C) and strain rate (10−4≤e≤103 s−1). Multiple martensitic γfcc (austenie)→ehcpMs (hcp-martensite)→αbccMs (bcc-martensite)-transformations occurred in the TRIP steel when deformed at higher strain rates and ambient temperatures. This mechanism leads to a pronounced strain hardening and high tensile strength (>1 000 MPa) with improved elongations to failure of >50%. The austenitic TWIP steel reveals extensive twin formation when deformed below 150°C at low and high strain rates. Under these conditions extremely high tensile ductility (>80%) and energy absorption is achieved and no brittle fracture transition temperature occurs. The governing microstructural parameter is the stacking fault energy Γfcc of the fcc austenite and the phase stability determined by the Gibbs free energy ΔGγ→e. These factors are strongly influenced by the manganese content and additions of aluminum and silicon.The stacking fault energy Γfcc and the Gibbs free energy G were calculated using the regular solution model. The results show that aluminum increases Γfcc and suppresses the γfcc→ehcpMs transformation, whereas silicon sustains the γfcc→ehcpMs transformation and decreases the stacking fault energy. At the critical value of Γfcc≈25 mJ/mol and for ΔGγ→e>0, the twinning mechanism is favored. At lower stacking fault energy of (Γfcc 0, martensitic phase transformation will be the governing deformation mechanism.The excellent ductility and the enhanced impact properties enable complex deep drawing or stretch forming operations of sheets and the fabrication of crash absorbing frame structures.

893 citations

Journal ArticleDOI
01 Nov 2018-Nature
TL;DR: It is shown that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials, which lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs).
Abstract: Oxygen, one of the most abundant elements on Earth, often forms an undesired interstitial impurity or ceramic phase (such as an oxide particle) in metallic materials. Even when it adds strength, oxygen doping renders metals brittle1–3. Here we show that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials. Unlike traditional interstitial strengthening4,5, such ordered interstitial complexes lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs)6–10. The tensile strength is enhanced (by 48.5 ± 1.8 per cent) and ductility is substantially improved (by 95.2 ± 8.1 per cent) when doping a model TiZrHfNb HEA with 2.0 atomic per cent oxygen, thus breaking the long-standing strength–ductility trade-off11. The oxygen complexes are ordered nanoscale regions within the HEA characterized by (O, Zr, Ti)-rich atomic complexes whose formation is promoted by the existence of chemical short-range ordering among some of the substitutional matrix elements in the HEAs. Carbon has been reported to improve strength and ductility simultaneously in face-centred cubic HEAs12, by lowering the stacking fault energy and increasing the lattice friction stress. By contrast, the ordered interstitial complexes described here change the dislocation shear mode from planar slip to wavy slip, and promote double cross-slip and thus dislocation multiplication through the formation of Frank–Read sources (a mechanism explaining the generation of multiple dislocations) during deformation. This ordered interstitial complex-mediated strain-hardening mechanism should be particularly useful in Ti-, Zr- and Hf-containing alloys, in which interstitial elements are highly undesirable owing to their embrittlement effects, and in alloys where tuning the stacking fault energy and exploiting athermal transformations13 do not lead to property enhancement. These results provide insight into the role of interstitial solid solutions and associated ordering strengthening mechanisms in metallic materials. Ordered oxygen complexes in high-entropy alloys enhance both strength and ductility in these compositionally complex solid solutions.

874 citations


Network Information
Related Topics (5)
Grain boundary
70.1K papers, 1.5M citations
91% related
Microstructure
148.6K papers, 2.2M citations
89% related
Alloy
171.8K papers, 1.7M citations
89% related
Nucleation
63.8K papers, 1.6M citations
83% related
Amorphous solid
117K papers, 2.2M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023153
2022316
2021199
2020186
2019157
2018145