scispace - formally typeset
Topic

Stand-alone power system

About: Stand-alone power system is a(n) research topic. Over the lifetime, 8650 publication(s) have been published within this topic receiving 192397 citation(s). The topic is also known as: Stand-alone photovoltaic power system.


Papers
More filters
Journal ArticleDOI

[...]

TL;DR: In this article, power electronics, the technology of efficiently processing electric power, play an essential part in the integration of the dispersed generation units for good efficiency and high performance of the power systems.
Abstract: The global electrical energy consumption is rising and there is a steady increase of the demand on the power capacity, efficient production, distribution and utilization of energy. The traditional power systems are changing globally, a large number of dispersed generation (DG) units, including both renewable and nonrenewable energy sources such as wind turbines, photovoltaic (PV) generators, fuel cells, small hydro, wave generators, and gas/steam powered combined heat and power stations, are being integrated into power systems at the distribution level. Power electronics, the technology of efficiently processing electric power, play an essential part in the integration of the dispersed generation units for good efficiency and high performance of the power systems. This paper reviews the applications of power electronics in the integration of DG units, in particular, wind power, fuel cells and PV generators.

2,098 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, the authors defined the three vehicle types that can produce V2G power and the power markets they can sell into, and developed equations to calculate the capacity for grid power from three types of electric drive vehicles.
Abstract: As the light vehicle fleet moves to electric drive (hybrid, battery, and fuel cell vehicles), an opportunity opens for “vehicle-to-grid” (V2G) power. This article defines the three vehicle types that can produce V2G power, and the power markets they can sell into. V2G only makes sense if the vehicle and power market are matched. For example, V2G appears to be unsuitable for baseload power—the constant round-theclock electricity supply—because baseload power can be provided more cheaply by large generators, as it is today. Rather, V2G’s greatest near-term promise is for quick-response, high-value electric services. These quick-response electric services are purchased to balance constant fluctuations in load and to adapt to unexpected equipment failures; they account for 5–10% of electric cost—$ 12 billion per year in the US. This article develops equations to calculate the capacity for grid power from three types of electric drive vehicles. These equations are applied to evaluate revenue and costs for these vehicles to supply electricity to three electric markets (peak power, spinning reserves, and regulation). The results suggest that the engineering rationale and economic motivation for V2G power are compelling. The societal advantages of developing V2G include an additional revenue stream for cleaner vehicles, increased stability and reliability of the electric grid, lower electric system costs, and eventually, inexpensive storage and backup for renewable electricity. © 2005 Elsevier B.V. All rights reserved.

1,982 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, the authors discuss the present status of battery energy storage technology and methods of assessing their economic viability and impact on power system operation and suggest a likely future outlook for the battery technologies and the electric hybrid vehicles in the context of power system applications.
Abstract: The penetration of renewable sources (particularly wind power) in to the power system network has been increasing in the recent years. As a result of this, there have been serious concerns over reliable and satisfactory operation of the power systems. One of the solutions being proposed to improve the reliability and performance of these systems is to integrate energy storage devices into the power system network. Further, in the present deregulated markets these storage devices could also be used to increase the profit margins of wind farm owners and even provide arbitrage. This paper discusses the present status of battery energy storage technology and methods of assessing their economic viability and impact on power system operation. Further, a discussion on the role of battery storage systems of electric hybrid vehicles in power system storage technologies had been made. Finally, the paper suggests a likely future outlook for the battery technologies and the electric hybrid vehicles in the context of power system applications.

1,447 citations

Journal ArticleDOI

[...]

TL;DR: In this article, a simple probabilistic method has been developed to predict the ability of energy storage to increase the penetration of intermittent embedded renewable generation (ERG) on weak electricity grids and to enhance the value of the electricity generated by time-shifting delivery to the network.
Abstract: A simple probabilistic method has been developed to predict the ability of energy storage to increase the penetration of intermittent embedded renewable generation (ERG) on weak electricity grids and to enhance the value of the electricity generated by time-shifting delivery to the network. This paper focuses on the connection of wind generators at locations where the level of ERG would be limited by the voltage rise. Short-term storage, covering less than 1 h, offers only a small increase in the amount of electricity that can be absorbed by the network. Storage over periods of up to one day delivers greater energy benefits, but is significantly more expensive. Different feasible electricity storage technologies are compared for their operational suitability over different time scales. The value of storage in relation to power rating and energy capacity has been investigated so as to facilitate appropriate sizing.

1,190 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, a review of several energy storage technologies for wind power applications is presented, where the main objectives of the article are the introduction of the operating principles, as well as the presentation of the main characteristics of ESS technologies suitable for stationary applications, and the definition and discussion of potential ESS applications in wind power according to an extensive literature review.
Abstract: Due to the stochastic nature of wind, electric power generated by wind turbines is highly erratic and may affect both the power quality and the planning of power systems. Energy Storage Systems (ESSs) may play an important role in wind power applications by controlling wind power plant output and providing ancillary services to the power system and therefore, enabling an increased penetration of wind power in the system. This article deals with the review of several energy storage technologies for wind power applications. The main objectives of the article are the introduction of the operating principles, as well as the presentation of the main characteristics of energy storage technologies suitable for stationary applications, and the definition and discussion of potential ESS applications in wind power, according to an extensive literature review.

1,092 citations


Network Information
Related Topics (5)
Electric power system
133K papers, 1.7M citations
93% related
Wind power
99K papers, 1.5M citations
91% related
Photovoltaic system
103.9K papers, 1.6M citations
88% related
Renewable energy
87.6K papers, 1.6M citations
87% related
Energy storage
65.6K papers, 1.1M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20212
20208
20196
201843
2017499
2016828