scispace - formally typeset
Search or ask a question
Topic

Stand-alone power system

About: Stand-alone power system is a research topic. Over the lifetime, 8650 publications have been published within this topic receiving 192397 citations. The topic is also known as: Stand-alone photovoltaic power system.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a stochastic planning framework for the battery energy storage system (BESS) in distribution networks with high wind power penetrations was proposed, aiming to maximise wind power utilisation while minimise the investment and operation costs.
Abstract: In recent years, the battery energy storage system (BESS) has been considered as a promising solution for mitigating renewable power generation intermittencies. This study proposes a stochastic planning framework for the BESS in distribution networks with high wind power penetrations, aiming to maximise wind power utilisation while minimise the investment and operation costs. In the proposed framework, the uncertainties in wind power output and system load are modelled by the Monte-Carlo simulation, and a chance-constrained stochastic optimisation model is formulated to optimally determine the location and capacity of BESS while ensuring wind power utilisation level. Then, the Monte-Carlo simulation embedded differential evolution algorithm is used to solve the problem. Simulation studies performed on a 15-bus radial distribution system prove the efficiency of the proposed method.

124 citations

Journal ArticleDOI
TL;DR: An effective control scheme is proposed for the ES-qZS-CMI based PV system, using which the system can achieve the distributed maximum power point track (MPPT) for each PV panel, balance the power between different modules, and provide the desired power for the grid.
Abstract: The quasi-Z-source cascade multilevel inverter (qZS-CMI) presents many advantages over conventional CMI when applied in photovoltaic (PV) power systems. For example, the qZS-CMI provides the balanced dc-link voltage and voltage boost ability, saves one-third modules, etc. However, the qZS-CMI still cannot overcome the intermittent and stochastic fluctuation of solar power injected to the grid. This paper proposes an energy stored qZS-CMI-based PV power generation system. The system combines the qZS-CMI and energy storage by adding an energy stored battery in each module to balance the stochastic fluctuations of PV power. This paper also proposes a control scheme for the energy stored qZS-CMI-based PV system. The proposed system can achieve the distributed maximum power point track for PV panels, balance the power between different modules, and provide the desired power to the grid. A detailed design method of controller parameters is disclosed. Simulation and experimental results verify the proposed system and the control scheme.

124 citations

Journal ArticleDOI
J. McDowall1
TL;DR: In this article, the authors discuss storage systems ranging from a few seconds of run time to several hours, and provide a rationale for the use of systems with several minutes of run-time to support a high penetration of wind power into weak electricity grids.

123 citations

Journal ArticleDOI
TL;DR: In this paper, a three-part survey instrument collected data from new vehicle buyers in California to explore potential PHEV energy impacts was used to estimate the electricity and gasoline use under three recharging scenarios and showed that the use of PHEV vehicles could halve gasoline use relative to conventional vehicles.
Abstract: Plug-in hybrid electric vehicles (PHEVs) can be powered by gasoline, grid electricity, or both. To explore potential PHEV energy impacts, a three-part survey instrument collected data from new vehicle buyers in California. We combine the available information to estimate the electricity and gasoline use under three recharging scenarios. Results suggest that the use of PHEV vehicles could halve gasoline use relative to conventional vehicles. Using three scenarios to represent plausible conditions on PHEV drivers’ recharge patterns (immediate and unconstrained, universal workplace access, and off-peak only), tradeoffs are described between the magnitude and timing of PHEV electricity use. PHEV electricity use could be increased through policies supporting non-home recharge opportunities, but this increase occurs during daytime hours and could contribute to peak electricity demand. Deferring all recharging to off-peak hours could eliminate all additions to daytime electricity demand from PHEVs, although less electricity is used and less gasoline displaced.

123 citations

Journal ArticleDOI
TL;DR: In this paper, an agent-based modeling framework for an integrated electricity system where loads become an additional resource is presented, and the results indicate that effective implementation of demand response to assist integration of variable renewable energy resources requires a diversity of loads to ensure functionality of the overall system.

123 citations


Network Information
Related Topics (5)
Electric power system
133K papers, 1.7M citations
93% related
Wind power
99K papers, 1.5M citations
91% related
Photovoltaic system
103.9K papers, 1.6M citations
88% related
Renewable energy
87.6K papers, 1.6M citations
87% related
Energy storage
65.6K papers, 1.1M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202388
2022188
20213
20208
20196
201843