scispace - formally typeset
Search or ask a question

Showing papers on "Star formation published in 2015"


Journal ArticleDOI
TL;DR: A comprehensive review of major developments in our understanding of gamma-ray bursts, with particular focus on the discoveries made within the last fifteen years when their true nature was uncovered, can be found in this paper.

864 citations


Journal ArticleDOI
TL;DR: The current status of models that employ two leading techniques to simulate the physics of galaxy formation: semianalytic models and numerical hydrodynamic simulations is reviewed in this paper, where the authors focus on a set of observational targets that describe the evolution of the global and structural properties of galaxies from roughly cosmic high noon (z ∼ 2 − 3) to the present.
Abstract: Modeling galaxy formation in a cosmological context presents one of the greatest challenges in astrophysics today due to the vast range of scales and numerous physical processes involved. Here we review the current status of models that employ two leading techniques to simulate the physics of galaxy formation: semianalytic models and numerical hydrodynamic simulations. We focus on a set of observational targets that describe the evolution of the global and structural properties of galaxies from roughly cosmic high noon (z ∼ 2–3) to the present. Although minor discrepancies remain, overall, models show remarkable convergence among different methods and make predictions that are in qualitative agreement with observations. Modelers have converged on a core set of physical processes that are critical for shaping galaxy properties. This core set includes cosmological accretion, strong stellar-driven winds that are more efficient at low masses, black hole feedback that preferentially suppresses star formation a...

781 citations


Journal ArticleDOI
TL;DR: In this paper, the scaling relations of molecular gas depletion timescale (t depl) and gas to stellar mass ratio (M mol gas/M* ) of 500 star-forming galaxies near the star formation "main-sequence" with redshift, specific star-formation rate (sSFR), and stellar mass (M* ).
Abstract: We combine molecular gas masses inferred from CO emission in 500 star-forming galaxies (SFGs) between z = 0 and 3, from the IRAM-COLDGASS, PHIBSS1/2, and other surveys, with gas masses derived from Herschel far-IR dust measurements in 512 galaxy stacks over the same stellar mass/redshift range. We constrain the scaling relations of molecular gas depletion timescale (t depl) and gas to stellar mass ratio (M mol gas/M* ) of SFGs near the star formation "main-sequence" with redshift, specific star-formation rate (sSFR), and stellar mass (M* ). The CO- and dust-based scaling relations agree remarkably well. This suggests that the CO → H2 mass conversion factor varies little within ±0.6 dex of the main sequence (sSFR(ms, z, M *)), and less than 0.3 dex throughout this redshift range. This study builds on and strengthens the results of earlier work. We find that t depl scales as (1 + z)–0.3 × (sSFR/sSFR(ms, z, M *))–0.5, with little dependence on M *. The resulting steep redshift dependence of M mol gas/M * ≈ (1 + z)3 mirrors that of the sSFR and probably reflects the gas supply rate. The decreasing gas fractions at high M* are driven by the flattening of the SFR-M * relation. Throughout the probed redshift range a combination of an increasing gas fraction and a decreasing depletion timescale causes a larger sSFR at constant M *. As a result, galaxy integrated samples of the M mol gas-SFR rate relation exhibit a super-linear slope, which increases with the range of sSFR. With these new relations it is now possible to determine M mol gas with an accuracy of ±0.1 dex in relative terms, and ±0.2 dex including systematic uncertainties.

637 citations


Journal ArticleDOI
TL;DR: In this article, a suite of hydrodynamic cosmological zoom simulations is presented to resolve the formation of star-forming giant molecular clouds to z = 0, and features an explicit stellar feedback model on small scales.
Abstract: We present an analysis of the galaxy-scale gaseous outflows from the Feedback in Realistic Environments (FIRE) simulations. This suite of hydrodynamic cosmological zoom simulations resolves formation of star-forming giant molecular clouds to z = 0, and features an explicit stellar feedback model on small scales. Our simulations reveal that high-redshift galaxies undergo bursts of star formation followed by powerful gusts of galactic outflows that eject much of the interstellar medium and temporarily suppress star formation. At low redshift, however, sufficiently massive galaxies corresponding to L* progenitors develop stable discs and switch into a continuous and quiescent mode of star formation that does not drive outflows far into the halo. Mass-loading factors for winds in L* progenitors are η ≈ 10 at high redshift, but decrease to η ≪ 1 at low redshift. Although lower values of η are expected as haloes grow in mass over time, we show that the strong suppression of outflows with decreasing redshift cannot be explained by mass evolution alone. Circumgalactic outflow velocities are variable and broadly distributed, but typically range between one and three times the circular velocity of the halo. Much of the ejected material builds a reservoir of enriched gas within the circumgalactic medium, some of which could be later recycled to fuel further star formation. However, a fraction of the gas that leaves the virial radius through galactic winds is never regained, causing most haloes with mass M_h ≤ 10^(12) M_⊙ to be deficient in baryons compared to the cosmic mean by z = 0.

549 citations


Journal ArticleDOI
TL;DR: In this article, the authors used cosmological simulations to study a characteristic evolution pattern of high-redshift galaxies, which is consistent with the way galaxies populate the SFR-size-mass space, and with gradients and scatter across the main sequence.
Abstract: We use cosmological simulations to study a characteristic evolution pattern of high-redshift galaxies. Early, stream-fed, highly perturbed, gas-rich discs undergo phases of dissipative contraction into compact, star-forming systems (‘blue’ nuggets) at z ∼ 4–2. The peak of gas compaction marks the onset of central gas depletion and inside-out quenching into compact ellipticals (red nuggets) by z ∼ 2. These are sometimes surrounded by gas rings or grow extended dry stellar envelopes. The compaction occurs at a roughly constant specific star formation rate (SFR), and the quenching occurs at a constant stellar surface density within the inner kpc (Σ 1 ). Massive galaxies quench earlier, faster, and at a higher Σ 1 than lower mass galaxies, which compactify and attempt to quench more than once. This evolution pattern is consistent with the way galaxies populate the SFR-size–mass space, and with gradients and scatter across the main sequence. The compaction is triggered by an intense inflow episode, involving (mostly minor) mergers, counter-rotating streams or recycled gas, and is commonly associated with violent disc instability. The contraction is dissipative, with the inflow rate >SFR, and the maximum Σ 1 anticorrelated with the initial spin parameter. The central quenching is triggered by the high SFR and stellar/supernova feedback (maybe also active galactic nucleus feedback) due to the high central gas density, while the central inflow weakens as the disc vanishes. Suppression of fresh gas supply by a hot halo allows the long-term maintenance of quenching once above a threshold halo mass, inducing the quenching downsizing.

479 citations


Journal ArticleDOI
14 May 2015-Nature
TL;DR: An analysis of the stellar metallicity in local galaxies, from 26,000 spectra, clearly reveals that strangulation is the primary mechanism responsible for quenching star formation, with a typical timescale of four billion years, at least for local galaxies with a stellar mass less than 1011 solar masses.
Abstract: Local galaxies are broadly divided into two main classes, star-forming (gas-rich) and quiescent (passive and gas-poor). The primary mechanism responsible for quenching star formation in galaxies and transforming them into quiescent and passive systems is still unclear. Sudden removal of gas through outflows or stripping is one of the mechanisms often proposed. An alternative mechanism is so-called "strangulation", in which the supply of cold gas to the galaxy is halted. Here we report an analysis of the stellar metallicity (the fraction of elements heavier than helium in stellar atmospheres) in local galaxies, from 26,000 spectra, that clearly reveals that strangulation is the primary mechanism responsible for quenching star formation, with a typical timescale of four billion years, at least for local galaxies with a stellar mass less than 10(11) solar masses. This result is further supported independently by the stellar age difference between quiescent and star-forming galaxies, which indicates that quiescent galaxies of less than 10(11) solar masses are on average observed four billion years after quenching due to strangulation.

474 citations


Journal ArticleDOI
TL;DR: In this article, the results of the Herschel Gould Belt survey (HGBS) observations in an ~11 deg2 area of the Aquila molecular cloud complex at d ~ 260 pc, imaged with the SPIRE and PACS photometric cameras in parallel mode from 70 μm to 500 μm.
Abstract: We present and discuss the results of the Herschel Gould Belt survey (HGBS) observations in an ~11 deg2 area of the Aquila molecular cloud complex at d ~ 260 pc, imaged with the SPIRE and PACS photometric cameras in parallel mode from 70 μm to 500 μm. Using the multi-scale, multi-wavelength source extraction algorithm getsources, we identify a complete sample of starless dense cores and embedded (Class 0-I) protostars in this region, and analyze their global properties and spatial distributions. We find a total of 651 starless cores, ~60% ± 10% of which are gravitationally bound prestellar cores, and they will likely form stars inthe future. We also detect 58 protostellar cores. The core mass function (CMF) derived for the large population of prestellar cores is very similar in shape to the stellar initial mass function (IMF), confirming earlier findings on a much stronger statistical basis and supporting the view that there is a close physical link between the stellar IMF and the prestellar CMF. The global shift in mass scale observed between the CMF and the IMF is consistent with a typical star formation efficiency of ~40% at the level of an individual core. By comparing the numbers of starless cores in various density bins to the number of young stellar objects (YSOs), we estimate that the lifetime of prestellar cores is ~1 Myr, which is typically ~4 times longer than the core free-fall time, and that it decreases with average core density. We find a strong correlation between the spatial distribution of prestellar cores and the densest filaments observed in the Aquila complex. About 90% of the Herschel-identified prestellar cores are located above a background column density corresponding to AV ~ 7, and ~75% of them lie within filamentary structures with supercritical masses per unit length ≳16 M⊙/pc. These findings support a picture wherein the cores making up the peak of the CMF (and probably responsible for the base of the IMF) result primarily from the gravitational fragmentation of marginally supercritical filaments. Given that filaments appear to dominate the mass budget of dense gas at AV> 7, our findings also suggest that the physics of prestellar core formation within filaments is responsible for a characteristic “efficiency” for the star formation process in dense gas.

415 citations


Journal ArticleDOI
TL;DR: The most metal-poor stars in the Galactic halo and satellite dwarf galaxies provide an opportunity to explore the chemical and physical conditions of the earliest star-forming environments in the Universe.
Abstract: The oldest, most metal-poor stars in the Galactic halo and satellite dwarf galaxies present an opportunity to explore the chemical and physical conditions of the earliest star-forming environments in the Universe. We review the fields of stellar archaeology and dwarf galaxy archaeology by examining the chemical abundance measurements of various elements in extremely metal-poor stars. Focus on the carbon-rich and carbon-normal halo star populations illustrates how these provide insight into the Population III star progenitors responsible for the first metal enrichment events. We extend the discussion to near-field cosmology, which is concerned with the formation of the first stars and galaxies, and how metal-poor stars can be used to constrain these processes. Complementary abundance measurements in high-redshift gas clouds further help establish the early chemical evolution of the Universe. The data appear consistent with the existence of two distinct channels of star formation at the earliest times.

414 citations


Journal ArticleDOI
TL;DR: In this article, the stellar population content of early-type galaxies from the ATLAS^(3D) survey is analyzed using spectra integrated within apertures covering up to one effective radius.
Abstract: We present the stellar population content of early-type galaxies from the ATLAS^(3D) survey. Using spectra integrated within apertures covering up to one effective radius, we apply two methods: one based on measuring line-strength indices and applying single stellar population (SSP) models to derive SSP-equivalent values of stellar age, metallicity, and alpha enhancement; and one based on spectral fitting to derive non-parametric star formation histories, mass-weighted average values of age, metallicity, and half-mass formation time-scales. Using homogeneously derived effective radii and dynamically determined galaxy masses, we present the distribution of stellar population parameters on the Mass Plane (M_(JAM), σ_e, R^(maj)_e), showing that at fixed mass, compact early-type galaxies are on average older, more metal-rich, and more alpha-enhanced than their larger counterparts. From non-parametric star formation histories, we find that the duration of star formation is systematically more extended in lower mass objects. Assuming that our sample represents most of the stellar content of today's local Universe, approximately 50 per cent of all stars formed within the first 2 Gyr following the big bang. Most of these stars reside today in the most massive galaxies (>10^(10.5) M⊙), which themselves formed 90 per cent of their stars by z ∼ 2. The lower mass objects, in contrast, have formed barely half their stars in this time interval. Stellar population properties are independent of environment over two orders of magnitude in local density, varying only with galaxy mass. In the highest density regions of our volume (dominated by the Virgo cluster), galaxies are older, alpha-enhanced, and have shorter star formation histories with respect to lower density regions.

411 citations


Journal ArticleDOI
TL;DR: In this article, the spectral energy distributions (SEDs) of star-forming galaxies were derived using an energy balance technique to connect the emission from stellar populations, dust attenuation, and dust emission in a physically consistent way.
Abstract: The ALESS survey has followed up on a sample of 122 sub-millimeter sources in the Extended Chandra Deep Field South at 870 μm with the Atacama Large Millimeter Array (ALMA), allowing us to pinpoint the positions of sub-millimeter galaxies (SMGs) to ∼0.3 arcsec and to find their precise counterparts at different wavelengths. This enabled the first compilation of the multi-wavelength spectral energy distributions (SEDs) of a statistically reliable survey of SMGs. In this paper, we present a new calibration of the magphys SED modeling code that is optimized to fit these ultraviolet-to-radio SEDs of star-forming galaxies using an energy balance technique to connect the emission from stellar populations, dust attenuation, and dust emission in a physically consistent way. We derive statistically and physically robust estimates of the photometric redshifts and physical parameters (such as stellar masses, dust attenuation, star formation rates (SFRs), and dust masses) for the ALESS SMGs. We find that the ALESS SMGs have median stellar mass , median SFR , median overall V-band dust attenuation mag, median dust mass , and median average dust temperature K. We find that the average intrinsic SED of the ALESS SMGs resembles that of local ultra-luminous infrared galaxies in the infrared range, but the stellar emission of our average SMG is brighter and bluer, indicating lower dust attenuation, possibly because they are more extended. We explore how the average SEDs vary with different parameters (redshift, sub-millimeter flux, dust attenuation, and total infrared luminosity), and we provide a new set of SMG templates that can be used to interpret other SMG observations. To put the ALESS SMGs into context, we compare their stellar masses and SFRs with those of less actively star-forming galaxies at the same redshifts. We find that at , about half of the SMGs lie above the star-forming main sequence (with SFRs three times larger than normal galaxies of the same stellar mass), while half are consistent with being at the high-mass end of the main sequence. At higher redshifts (), the SMGs tend to have higher SFRs and stellar masses, but the fraction of SMGs that lie significantly above the main sequence decreases to less than a third.

398 citations


Journal ArticleDOI
26 Mar 2015-Nature
TL;DR: Observations of a powerful accretion-disk wind with a mildly relativistic velocity in the X-ray spectrum of IRAS F11119+3257, a nearby optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow are reported.
Abstract: Observations of an ultrafast accretion-disk wind in the X-ray spectrum of a nearby ultraluminous infrared galaxy support the theory that such winds affect the evolution of supermassive black holes and their host galaxies. Francesco Tombesi et al. report the detection of a powerful accretion-disk wind with a mildly relativistic velocity in the X-ray spectrum of IRAS F11119+3257, a nearby (z = 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The energetics of these winds are consistent with the suggestion that active galactic nuclei winds can provide an efficient way to transfer energy to the interstellar medium and support the theory that such winds affect the evolution of supermassive black holes and their host galaxies. Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies1,2. Recent observations of large-scale molecular outflows3,4,5,6,7,8 in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models9,10,11,12 suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete3,4,5,6,7,8 because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies13,14 and a few higher-redshift quasars15,16,17,18,19. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow6. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity6 of 1.5 × 1046 ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism9,10,11,12 that is the basis of the quasar feedback1 in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows).

Journal ArticleDOI
TL;DR: The MOSFIRE Deep Evolution Field (MOSDEF) survey as discussed by the authors was the first large-scale deep evolution field (DEDF) survey, which aims to obtain moderate-resolution (R = 3000-3650) rest-frame optical spectra (∼3700-7000 Å) for ∼1500 galaxies at in three well-studied CANDELS fields: AEGIS, COSMOS, and GOODS-N. In addition, 55 additional galaxies were serendipitously detected.
Abstract: In this paper we present the MOSFIRE Deep Evolution Field (MOSDEF) survey. The MOSDEF survey aims to obtain moderate-resolution (R = 3000–3650) rest-frame optical spectra (∼3700–7000 Å) for ∼1500 galaxies at in three well-studied CANDELS fields: AEGIS, COSMOS, and GOODS-N. Targets are selected in three redshift intervals: , , and , down to fixed (F160W) magnitudes of 24.0, 24.5, and 25.0, respectively, using the photometric and spectroscopic catalogs from the 3D-HST survey. We target both strong nebular emission lines (e.g., [O ii] , Hβ, [O iii] , Hα, [N ii] , and [S ii] ) and stellar continuum and absorption features (e.g., Balmer lines, Ca-ii H and K, Mgb, 4000 Å break). Here we present an overview of our survey, the observational strategy, the data reduction and analysis, and the sample characteristics based on spectra obtained during the first 24 nights. To date, we have completed 21 masks, obtaining spectra for 591 galaxies. For ∼80% of the targets we derive a robust redshift from either emission or absorption lines. In addition, we confirm 55 additional galaxies, which were serendipitously detected. The MOSDEF galaxy sample includes unobscured star-forming, dusty star-forming, and quiescent galaxies and spans a wide range in stellar mass () and star formation rate (). The spectroscopically confirmed sample is roughly representative of an H-band limited galaxy sample at these redshifts. With its large sample size, broad diversity in galaxy properties, and wealth of available ancillary data, MOSDEF will transform our understanding of the stellar, gaseous, metal, dust, and black hole content of galaxies during the time when the universe was most active.

Journal ArticleDOI
TL;DR: In this article, the authors used early observations from the MOSFIRE Deep Evolution Field survey (DESF) to measure the dust attenuation curve of z? 2 galaxies and found that the difference in the total attenuation of the ionized gas and stellar continuum correlates strongly with SFR.
Abstract: We present results on the dust attenuation curve of z ? 2 galaxies using early observations from the MOSFIRE Deep Evolution Field survey. Our sample consists of 224 star-forming galaxies with zspec = 1.36?2.59 and high signal-to-noise ratio measurements of H? and H? obtained with Keck/MOSFIRE. We construct composite spectral energy distributions (SEDs) of galaxies in bins of Balmer decrement to measure the attenuation curve. We find a curve that is similar to the SMC extinction curve at ? ? 2500 ?. At shorter wavelengths, the shape is identical to that of the Calzetti et al. relation, but with a lower normalization. Hence, the new attenuation curve results in star formation rates (SFRs) that are lower, and stellar masses that are dex lower, than those obtained with the Calzetti relation. We find that the difference in the total attenuation of the ionized gas and stellar continuum correlates strongly with SFR, such that for dust-corrected SFRs ? 20 M? yr?1, assuming a Chabrier initial mass function, the nebular emission lines suffer an increasing degree of obscuration relative to the continuum. A simple model that can account for these trends is one in which the UV through optical stellar continuum is dominated by a population of less-reddened stars, while the nebular line and bolometric luminosities become increasingly dominated by dustier stellar populations for galaxies with large SFRs, as a result of the increased dust enrichment that accompanies such galaxies. Consequently, UV- and SED-based SFRs may underestimate the total SFR at even modest levels of ?20 M? yr?1.

Journal ArticleDOI
TL;DR: In this paper, the evolution of galaxy masses and star formation rates in the Evolution and Assembly of Galaxies and their Environment (EAGLE) simulations are investigated, and the authors demonstrate that the simulations reproduce the observed growth of the stellar mass density to within 20 per cent.
Abstract: We investigate the evolution of galaxy masses and star formation rates in the Evolution and Assembly of Galaxies and their Environment (EAGLE) simulations. These comprise a suite of hydrodynamical simulations in a $\Lambda$CDM cosmogony with subgrid models for radiative cooling, star formation, stellar mass loss, and feedback from stars and accreting black holes. The subgrid feedback was calibrated to reproduce the observed present-day galaxy stellar mass function and galaxy sizes. Here we demonstrate that the simulations reproduce the observed growth of the stellar mass density to within 20 per cent. The simulation also tracks the observed evolution of the galaxy stellar mass function out to redshift z = 7, with differences comparable to the plausible uncertainties in the interpretation of the data. Just as with observed galaxies, the specific star formation rates of simulated galaxies are bimodal, with distinct star forming and passive sequences. The specific star formation rates of star forming galaxies are typically 0.2 to 0.4 dex lower than observed, but the evolution of the rates track the observations closely. The unprecedented level of agreement between simulation and data makes EAGLE a powerful resource to understand the physical processes that govern galaxy formation.

Journal ArticleDOI
TL;DR: In this article, the authors present multiple ultrahigh resolution cosmological hydrodynamic simulations of M_★ ≃ 10^(4-6.3) and M_⊙ dwarfs that form within two M_(vir) = 10.5-10.5
Abstract: We present multiple ultrahigh resolution cosmological hydrodynamic simulations of M_★ ≃ 10^(4–6.3) M_⊙ dwarf galaxies that form within two M_(vir) = 10^(9.5–10) M_⊙ dark matter halo initial conditions. Our simulations rely on the Feedback in Realistic Environments (FIRE) implementation of star formation feedback and were run with high enough force and mass resolution to directly resolve structure on the ∼200 pc scales. The resultant galaxies sit on the M_★ versus M_(vir) relation required to match the Local Group stellar mass function via abundance matching. They have bursty star formation histories and also form with half-light radii and metallicities that broadly match those observed for local dwarfs at the same stellar mass. We demonstrate that it is possible to create a large (∼1 kpc) constant-density dark matter core in a cosmological simulation of an M_★ ≃ 10^(6.3) M_⊙ dwarf galaxy within a typical M_(vir) = 10^(10) M_⊙ halo – precisely the scale of interest for resolving the ‘too big to fail’ problem. However, these large cores are not ubiquitous and appear to correlate closely with the star formation histories of the dwarfs: dark matter cores are largest in systems that form their stars late (z ≲ 2), after the early epoch of cusp building mergers has ended. Our M_★ ≃ 10^4 M_⊙ dwarf retains a cuspy dark matter halo density profile that matches that of a dark-matter-only run of the same system. Though ancient, most of the stars in our ultrafaint form after reionization; the ultraviolet field acts mainly to suppress fresh gas accretion, not to boil away gas that is already present in the protodwarf.

Journal ArticleDOI
TL;DR: In this paper, the authors present a study on the evolution of the slope and scatter of the SFR-stellar mass relation for galaxies at 3.5? z? 6.5 using multi-wavelength photometry in GOODS-S from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and Spitzer Extended Deep Survey.
Abstract: Distant star-forming galaxies show a correlation between their star formation rates (SFRs) and stellar masses, and this has deep implications for galaxy formation. Here, we present a study on the evolution of the slope and scatter of the SFR-stellar mass relation for galaxies at 3.5 ? z ? 6.5 using multi-wavelength photometry in GOODS-S from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and Spitzer Extended Deep Survey. We describe an updated, Bayesian spectral-energy distribution fitting method that incorporates effects of nebular line emission, star formation histories that are constant or rising with time, and different dust-attenuation prescriptions (starburst and Small Magellanic Cloud). From z = 6.5 to z = 3.5 star-forming galaxies in CANDELS follow a nearly unevolving correlation between stellar mass and SFR that follows SFR?~? with a =0.54 ? 0.16 at z ~ 6 and 0.70 ? 0.21 at z ~ 4. This evolution requires a star formation history that increases with decreasing redshift (on average, the SFRs of individual galaxies rise with time). The observed scatter in the SFR-stellar mass relation is tight, ?(log SFR/M ? yr?1) 9?dex. Assuming that the SFR is tied to the net gas inflow rate (SFR?~ ), then the scatter in the gas inflow rate is also smaller than 0.3?0.4?dex for star-forming galaxies in these stellar mass and redshift ranges, at least when averaged over the timescale of star formation. We further show that the implied star formation history of objects selected on the basis of their co-moving number densities is consistent with the evolution in the SFR-stellar mass relation.

Journal ArticleDOI
TL;DR: In this paper, the authors present a study on the evolution of the slope and scatter of the SFR-stellar mass relation for galaxies at $3.5 to $z$ = 3.5$ using multi-wavelength photometry in GOODS-S from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and Spitzer Extended Deep Survey.
Abstract: Distant star-forming galaxies show a correlation between their star formation rates (SFR) and stellar masses, and this has deep implications for galaxy formation. Here, we present a study on the evolution of the slope and scatter of the SFR-stellar mass relation for galaxies at $3.5\leq z\leq 6.5$ using multi-wavelength photometry in GOODS-S from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and Spitzer Extended Deep Survey. We describe an updated, Bayesian spectral-energy distribution fitting method that incorporates effects of nebular line emission, star formation histories that are constant or rising with time, and different dust attenuation prescriptions (starburst and Small Magellanic Cloud). From $z$=6.5 to $z$=3.5 star-forming galaxies in CANDELS follow a nearly unevolving correlation between stellar mass and SFR that follows SFR $\sim$ $M_\star^a$ with $a = 0.54 \pm 0.16$ at $z\sim 6$ and $0.70 \pm 0.21$ at $z\sim 4$. This evolution requires a star formation history that increases with decreasing redshift (on average, the SFRs of individual galaxies rise with time). The observed scatter in the SFR-stellar mass relation is tight, $\sigma(\log \mathrm{SFR}/\mathrm{M}_\odot$ yr$^{-1}) 9$ dex. Assuming that the SFR is tied to the net gas inflow rate (SFR $\sim$ $\dot{M}_\mathrm{gas}$), then the scatter in the gas inflow rate is also smaller than 0.3$-$0.4 dex for star-forming galaxies in these stellar mass and redshift ranges, at least when averaged over the timescale of star formation. We further show that the implied star formation history of objects selected on the basis of their co-moving number densities is consistent with the evolution in the SFR-stellar mass relation.

Journal ArticleDOI
TL;DR: In this article, the authors study the distribution of cold dark matter (CDM) in cosmological simulations from the FIRE (Feedback In Realistic Environments) project, for M_* ∼ 10^(4-11)
Abstract: We study the distribution of cold dark matter (CDM) in cosmological simulations from the FIRE (Feedback In Realistic Environments) project, for M_* ∼ 10^(4–11) M_⊙ galaxies in M_h ∼ 10^(9–12) M_⊙ haloes. FIRE incorporates explicit stellar feedback in the multiphase interstellar medium, with energetics from stellar population models. We find that stellar feedback, without ‘fine-tuned’ parameters, greatly alleviates small-scale problems in CDM. Feedback causes bursts of star formation and outflows, altering the DM distribution. As a result, the inner slope of the DM halo profile (α) shows a strong mass dependence: profiles are shallow at M_h ∼ 10^(10)–10^(11) M_⊙ and steepen at higher/lower masses. The resulting core sizes and slopes are consistent with observations. This is broadly consistent with previous work using simpler feedback schemes, but we find steeper mass dependence of α, and relatively late growth of cores. Because the star formation efficiency M_*/M_h is strongly halo mass dependent, a rapid change in α occurs around M_h ∼ 10^(10) M_⊙ (M_* ∼ 10^6–10^7 M_⊙), as sufficient feedback energy becomes available to perturb the DM. Large cores are not established during the period of rapid growth of haloes because of ongoing DM mass accumulation. Instead, cores require several bursts of star formation after the rapid build-up has completed. Stellar feedback dramatically reduces circular velocities in the inner kpc of massive dwarfs; this could be sufficient to explain the ‘Too Big To Fail’ problem without invoking non-standard DM. Finally, feedback and baryonic contraction in Milky Way-mass haloes produce DM profiles slightly shallower than the Navarro–Frenk–White profile, consistent with the normalization of the observed Tully–Fisher relation.

Journal ArticleDOI
TL;DR: In this paper, a review of stellar archaeology and dwarf galaxy archaeology by examining the chemical abundance measurements of various elements in extremely metal-poor stars is presented. And the authors extend the discussion to near-field cosmology, which is concerned with the formation of the first stars and galaxies and how metalpoor stars can be used to constrain these processes.
Abstract: The oldest, most metal-poor stars in the Galactic halo and satellite dwarf galaxies present an opportunity to explore the chemical and physical conditions of the earliest star forming environments in the Universe. We review the fields of stellar archaeology and dwarf galaxy archaeology by examining the chemical abundance measurements of various elements in extremely metal-poor stars. Focus on the carbon-rich and carbon-normal halo star populations illustrates how these provide insight into the Population III star progenitors responsible for the first metal enrichment events. We extend the discussion to near-field cosmology, which is concerned with the formation of the first stars and galaxies and how metal-poor stars can be used to constrain these processes. Complementary abundance measurements in high-redshift gas clouds further help to establish the early chemical evolution of the Universe. The data appear consistent with the existence of two distinct channels of star formation at the earliest times.

Journal ArticleDOI
TL;DR: The NIHAO project as mentioned in this paper is a set of 100 cosmological zoom-in hydrodynamical simulations performed using the GASOLINE code, with an improved implementation of the SPH algorithm.
Abstract: We introduce project NIHAO (Numerical Investigation of a Hundred Astrophysical Objects), a set of 100 cosmological zoom-in hydrodynamical simulations performed using the GASOLINE code, with an improved implementation of the SPH algorithm. The haloes in our study range from dwarf (M-200 similar to 5 x 10(9) M-circle dot) to Milky Way (M-200 similar to 2 x 10(12) M-circle dot) masses, and represent an unbiased sampling of merger histories, concentrations and spin parameters. The particle masses and force softenings are chosen to resolve the mass profile to below 1 per cent of the virial radius at all masses, ensuring that galaxy half-light radii are well resolved. Using the same treatment of star formation and stellar feedback for every object, the simulated galaxies reproduce the observed inefficiency of galaxy formation across cosmic time as expressed through the stellar mass versus halo mass relation, and the star formation rate versus stellar mass relation. We thus conclude that stellar feedback is the chief piece of physics required to limit the efficiency of star formation in galaxies less massive than the Milky Way.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the dependence of radial momentum injection on both physical conditions and numerical parameters, and they found that the maximum mass in hot gas is quite insensitive to environmental inhomogeneity.
Abstract: Supernova (SN) explosions deposit prodigious energy and momentum in their environments, with the former regulating multiphase thermal structure and the latter regulating turbulence and star formation rates in the interstellar medium (ISM). However, systematic studies quantifying the impact of SNe in realistic inhomogeneous ISM conditions have been lacking. Using three-dimensional hydrodynamic simulations, we investigate the dependence of radial momentum injection on both physical conditions (considering a range of mean density n=0.1-100) and numerical parameters. Our inhomogeneous simulations adopt two-phase background states that result from thermal instability in atomic gas. Although the SNR morphology becomes highly complex for inhomogeneous backgrounds, the radial momentum injection is remarkably insensitive to environmental details. For our two-phase simulations, the final momentum produced by a single SN is given by 2.8*10^5 M_sun*km/s n^{-0.17}. This is only 5% less than the momentum injection for a homogeneous environment with the same mean density, and only 30% greater than the momentum at the time of shell formation. The maximum mass in hot gas is quite insensitive to environmental inhomogeneity. Strong magnetic fields alter the hot gas mass at very late times, but the momentum injection remains the same. Initial experiments with multiple spatially-correlated SNe show a momentum per event nearly as large as single-SN cases. We also present a full numerical parameter study to assess convergence requirements. For convergence in the momentum and other quantities, we find that the numerical resolution dx and the initial size of the SNR r_init must satisfy dx, r_init

Journal ArticleDOI
TL;DR: In this article, the authors reported the discovery of 854 ultra-diffuse galaxies (UDGs) in the Coma cluster using deep R band images, with partial B, i, and H? band coverage, obtained with the Subaru telescope.
Abstract: We report the discovery of 854 ultra-diffuse galaxies (UDGs) in the Coma cluster using deep R band images, with partial B, i, and H? band coverage, obtained with the Subaru telescope. Many of them (332) are Milky Way (MW) sized with very large effective radii of . This study was motivated by the recent discovery of 47 UDGs by Dokkum et al.; our discovery suggests UDGs after accounting for the smaller Subaru field (; about one-half of Dragonfly). The new Subaru UDGs show a distribution concentrated around the cluster center, strongly suggesting that the great majority are (likely longtime) cluster members. They are a passively evolving population, lying along the red sequence in the color?magnitude diagram with no signature of H? emission. Star formation was, therefore, quenched in the past. They have exponential light profiles, effective radii ?, effective surface brightnesses 25?28 mag arcsec?2, and stellar masses ?. There is also a population of nucleated UDGs. Some MW-sized UDGs appear closer to the cluster center than previously reported; their survival in the strong tidal field, despite their large sizes, possibly indicates a large dark matter fraction protecting the diffuse stellar component. The indicated baryon fraction is less than the cosmic average, and thus the gas must have been removed (from the possibly massive dark halo). The UDG population is elevated in the Coma cluster compared to the field, indicating that the gas removal mechanism is related primarily to the cluster environment.

Journal ArticleDOI
TL;DR: In this paper, the authors estimate the rate and the luminosity function of short gamma-ray bursts (sGRBs) that are non-collapsars, using the peak fluxes and redshifts of BATSE, Swift and Fermi GRBs.
Abstract: We estimate the rate and the luminosity function of short (hard) Gamma-Ray Bursts (sGRBs) that are non-Collapsars, using the peak fluxes and redshifts of BATSE, Swift and Fermi GRBs. Following Bromberg2013 we select a sub-sample of Swift bursts which are most likely non-Collapsars. We find that these sGRBs are delayed relative to the global star formation rate (SFR) with a typical delay time of a 3-4 Gyr (depending on the SFR model). However, if two or three sGRB at high redshifts have been missed because of selection effects, a distribution of delay times of ~1/t would be also compatible. The current event rate of these non-Collapsar sGRBs with L_iso > 5*10^49 erg/s is 4.1(-1.9,+2.3)Gpc^-3 yr^-1. The rate was significantly larger around z ~ 1 and it declines since that time. The luminosity function we find is a broken power law with a break at 2.0(-0.4,+1.4) * 10^52~erg/s and power-law indices 0.95(-0.12,+0.12) and 2.0(-0.8,+1.0). When considering the whole Swift sGRB sample we find that it is composed of two populations: One group (~ 60%-80% of Swift sGRBs) with the above rate and time delay and a second group (~ 20%-40% of Swift sGRBs) of potential "impostors" that follow the SFR with no delay. These two populations are in very good agreement with the division of sGRBs to non-Collapsars and Collapsars suggested recently by Bromberg2013. If non-Collapsar sGRBs arise from neutron star merger this rate suggest a detection rate of 3-100 yr^-1 by a future gravitational wave detectors (e.g. Advanced Ligo/Virgo with detection horizon on 300 Mpc), and a co-detection with Fermi (Swift) rate of 0.1-1 yr^-1 (0.02-0.14 yr^-1). We estimate that about 4 * 10^5 (f_b^-1 / 30) mergers took place in the Milky Way. If $0.025 m_\odot$ were ejected in each event this would have been sufficient to produce all the heavy r-process material in the Galaxy.

Journal ArticleDOI
TL;DR: In this article, the authors measured the average spectral energy distributions as a function of redshift using a stacking analysis of Spitzer, Herschel, LABOCA and AzTEC data for two samples of galaxies: normal star-forming objects and strong starbursts, as defined by their distance to the main sequence.
Abstract: We aim to measure the average dust and molecular gas content of massive star-forming galaxies (>3 × 1010M⊙) up to z = 4 in the COSMOS field to determine if the intense star formation observed at high redshift is induced by major mergers or is caused by large gas reservoirs. Firstly, we measured the evolution of the average spectral energy distributions as a function of redshift using a stacking analysis of Spitzer, Herschel, LABOCA, and AzTEC data for two samples of galaxies: normal star-forming objects and strong starbursts, as defined by their distance to the main sequence. We found that the mean intensity of the radiation field ⟨ U ⟩ heating the dust (strongly correlated with dust temperature) increases with increasing redshift up to z = 4 in main-sequence galaxies. We can reproduce this evolution with simple models that account for the decrease in the gas metallicity with redshift. No evolution of ⟨ U ⟩ with redshift is found in strong starbursts. We then deduced the evolution of the molecular gas fraction (defined here as Mmol/ (Mmol + M⋆)) with redshift and found a similar, steeply increasing trend for both samples. At z ~ 4, this fraction reaches ~60%. The average position of the main-sequence galaxies is on the locus of the local, normal star-forming disks in the integrated Schmidt-Kennicutt diagram (star formation rate versus mass of molecular gas), suggesting that the bulk of the star formation up to z = 4 is dominated by secular processes.

Journal ArticleDOI
TL;DR: In this article, the authors used the unique combination of deep optical/nearinfrared/mid-infrared imaging provided by HST, Spitzer, and the VLT in the CANDELS-UDS, GOODS-South, and HUDF fields to determine the GSMF over the redshift range 3.5 ≤ z ≤ 7.5.
Abstract: Context. The form and evolution of the galaxy stellar mass function (GSMF) at high redshifts provide crucial information on star formation history and mass assembly in the young Universe, close or even prior to the epoch of reionization. Aims. We used the unique combination of deep optical/near-infrared/mid-infrared imaging provided by HST, Spitzer, and the VLT in the CANDELS-UDS, GOODS-South, and HUDF fields to determine the GSMF over the redshift range 3.5 ≤ z ≤ 7.5. Methods. We used the HST WFC3/IR near-infrared imaging from CANDELS and HUDF09, reaching H ≃ 27 − 28.5 over a total area of 369 arcmin^2, in combination with associated deep HST ACS optical data, deep Spitzer IRAC imaging from the SEDS programme, and deep Y and K-band VLT Hawk-I images from the HUGS programme, to select a galaxy sample with high-quality photometric redshifts. These have been calibrated with more than 150 spectroscopic redshifts in the range 3.5 ≤ z ≤ 7.5, resulting in an overall precision of σ_z/ (1 + z) ~ 0.037. With this database we have determined the low-mass end of the high-redshift GSMF with unprecedented precision, reaching down to masses as low as M^∗ ~ 10^9 M_⊙ at z = 4 and ~6 × 10^9 M_⊙ at z = 7. Results. We find that the GSMF at 3.5 ≤ z ≤ 7.5 depends only slightly on the recipes adopted to measure the stellar masses, namely the photometric redshifts, the star formation histories, the nebular contribution, or the presence of AGN in the parent sample. The low-mass end of the GSMF is steeper than has been found at lower redshifts, but appears to be unchanged over the redshift range probed here. Meanwhile the high-mass end of the GSMF appears to evolve primarily in density, although there is also some evidence of evolution in characteristic mass. Our results are very different from previous mass function estimates based on converting UV galaxy luminosity functions into mass functions via tight mass-to-light relations. Integrating our evolving GSMF over mass, we find that the growth of stellar mass density is barely consistent with the time-integral of the star formation rate density over cosmic time at z> 4. Conclusions. These results confirm the unique synergy of the CANDELS+HUDF, HUGS, and SEDS surveys for the discovery and study of moderate/low-mass galaxies at high redshifts, and reaffirm the importance of space-based infrared selection for the unbiased measurement of the evolving GSMF in the young Universe.

Journal ArticleDOI
TL;DR: In this paper, the authors present the public release of the stellar mass catalogs for the GOODS-S and UDS fields obtained using some of the deepest near-IR images available, achieved as part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey project.
Abstract: We present the public release of the stellar mass catalogs for the GOODS-S and UDS fields obtained using some of the deepest near-IR images available, achieved as part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey project. We combine the effort from 10 different teams, who computed the stellar masses using the same photometry and the same redshifts. Each team adopted their preferred fitting code, assumptions, priors, and parameter grid. The combination of results using the same underlying stellar isochrones reduces the systematics associated with the fitting code and other choices. Thanks to the availability of different estimates, we can test the effect of some specific parameters and assumptions on the stellar mass estimate. The choice of the stellar isochrone library turns out to have the largest effect on the galaxy stellar mass estimates, resulting in the largest distributions around the median value (with a semi interquartile range larger than 0.1 dex). On the other hand, for most galaxies, the stellar mass estimates are relatively insensitive to the different parameterizations of the star formation history. The inclusion of nebular emission in the model spectra does not have a significant impact for the majority of galaxies (less than a factor of 2 for ~80% of the sample). Nevertheless, the stellar mass for the subsample of young galaxies (age <100 Myr), especially in particular redshift ranges (e.g., 2.2 < z < 2.4, 3.2 < z < 3.6, and 5.5 < z < 6.5), can be seriously overestimated (by up to a factor of 10 for <20 Myr sources) if nebular contribution is ignored.

Journal ArticleDOI
TL;DR: In this article, a hierarchical Bayesian (HB) statistical method was proposed to account for the possibility that any value may be incorrect or have underestimated errors, which is robust to a wide variety of assumptions about the nature of problems in individual measurements or errors.
Abstract: We present improved estimates of several global properties of the Milky Way, including its current star formation rate (SFR), the stellar mass contained in its disk and bulge+bar components, as well as its total stellar mass. We do so by combining previous measurements from the literature using a hierarchical Bayesian (HB) statistical method that allows us to account for the possibility that any value may be incorrect or have underestimated errors. We show that this method is robust to a wide variety of assumptions about the nature of problems in individual measurements or error estimates. Ultimately, our analysis yields a SFR for the Galaxy of $\dot{\mathrm{M}}_\star=1.65\pm0.19$ $\textrm{M}_\odot \textrm{yr}^{-1}$, assuming a Kroupa initial mass function (IMF). By combining HB methods with Monte Carlo simulations that incorporate the latest estimates of the Galactocentric radius of the Sun, $R_0$, the exponential scale length of the disk, $L_d$, and the local surface density of stellar mass, $\Sigma_\star(R_0)$, we show that the mass of the Galactic bulge+bar is $\textrm{M}_\star^B=0.91\pm0.07\times10^{10}$ $\textrm{M}_\odot$, the disk mass is $\textrm{M}_\star^D=5.17\pm1.11\times10^{10}$ $\textrm{M}_\odot$, and their combination yields a total stellar mass of $\textrm{M}_\star=6.08\pm1.14\times10^{10}$ $\textrm{M}_\odot$ (assuming a Kroupa IMF and an exponential disk profile). This analysis is based upon a new compilation of literature bulge mass estimates, normalized to common assumptions about the stellar initial mass function and Galactic disk properties, presented herein. We additionally find a bulge-to-total mass ratio for the Milky Way of $B/T=0.150^{+0.028}_{-0.019}$ and a specific star formation rate of $\dot{\mathrm{M}}_\star/\textrm{M}_\star=2.71\pm0.59\times10^{-11} \textrm{yr}^{-1}$.

Journal ArticleDOI
17 Apr 2015-Science
TL;DR: Mapping star-forming activity and densities shows an evolutionary connection between galaxies at z ~ 2.2 and those 10 million years later, and it is found that, in the most massive galaxies, star formation is quenched from the inside out, on time scales less than 1 billion years in the inner regions, up to a few billion Years in the outer disks.
Abstract: Most present-day galaxies with stellar masses ≥1011 solar masses show no ongoing star formation and are dense spheroids. Ten billion years ago, similarly massive galaxies were typically forming stars at rates of hundreds solar masses per year. It is debated how star formation ceased, on which time scales, and how this “quenching” relates to the emergence of dense spheroids. We measured stellar mass and star-formation rate surface density distributions in star-forming galaxies at redshift 2.2 with ~1-kiloparsec resolution. We find that, in the most massive galaxies, star formation is quenched from the inside out, on time scales less than 1 billion years in the inner regions, up to a few billion years in the outer disks. These galaxies sustain high star-formation activity at large radii, while hosting fully grown and already quenched bulges in their cores.

Journal ArticleDOI
TL;DR: In this article, an objective definition of the main sequence (MS) of star-forming (SF) galaxies is proposed, which does not rely at all on a pre-selection of SF galaxies.
Abstract: The main sequence (MS) of star-forming (SF) galaxies plays a fundamental role in driving galaxy evolution and our efforts to understand it. However, different studies find significant differences in the normalization, slope, and shape of the MS. These discrepancies arise mainly from the different selection criteria adopted to isolate SF galaxies, which may include or exclude galaxies with a specific star formation rate (SFR) substantially below the MS value. To obviate this limitation of all current criteria, we propose an objective definition of the MS that does not rely at all on a pre-selection of SF galaxies. Constructing the 3D SFR–mass–number plot, the MS is then defined as the ridge line of the SF peak, as illustrated with various figures. The advantages of such a definition are manifold. If generally adopted, it will facilitate the inter-comparison of results from different groups using the same SFR and stellar mass diagnostics, or it will highlight the relative systematics of different diagnostics. All of this could help to understand MS galaxies as systems in a quasi-steady state equilibrium and would also provide a more objective criterion for identifying quenching galaxies.

Journal ArticleDOI
TL;DR: In this article, an initial sample of 87 star-forming galaxies with spectroscopic coverage of Hβ, [O III]λ5007, Hα, and [N II]−λ6584 rest-frame optical emission lines was used to estimate the gas-phase oxygen abundance based on the N2 and O3N2 strong-line indicators.
Abstract: We present results on the z ~ 2.3 mass-metallicity relation (MZR) using early observations from the MOSFIRE Deep Evolution Field survey. We use an initial sample of 87 star-forming galaxies with spectroscopic coverage of Hβ, [O III] λ5007, Hα, and [N II] λ6584 rest-frame optical emission lines, and estimate the gas-phase oxygen abundance based on the N2 and O3N2 strong-line indicators. We find a positive correlation between stellar mass and metallicity among individual z ~ 2.3 galaxies using both the N2 and O3N2 indicators. We also measure the emission-line ratios and corresponding oxygen abundances for composite spectra in bins of stellar mass. Among composite spectra, we find a monotonic increase in metallicity with increasing stellar mass, offset ~0.15-0.3 dex below the local MZR. When the sample is divided at the median star-formation rate (SFR), we do not observe significant SFR dependence of the z ~ 2.3 MZR among either individual galaxies or composite spectra. We furthermore find that z ~ 2.3 galaxies have metallicities ~0.1 dex lower at a given stellar mass and SFR than is observed locally. This offset suggests that high-redshift galaxies do not fall on the local fundamental metallicity relation among stellar mass, metallicity, and SFR, and may provide evidence of a phase of galaxy growth in which the gas reservoir is built up due to inflow rates that are higher than star-formation and outflow rates. However, robust conclusions regarding the gas-phase oxygen abundances of high-redshift galaxies await a systematic reappraisal of the application of locally calibrated metallicity indicators at high redshift.