scispace - formally typeset
Search or ask a question
Topic

Star formation

About: Star formation is a research topic. Over the lifetime, 37405 publications have been published within this topic receiving 1808161 citations. The topic is also known as: astrogenesis.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors used a sample of BzK-selected star-forming galaxies, drawn from the Cosmic Evolution Survey, to perform stacking analysis of their 1.4 GHz radio continuum as a function of different stellar population properties, after cleaning the sample from contamination by active galactic nuclei.
Abstract: We present first results of a study aimed to constrain the star formation rate (SFR) and dust content of galaxies at z ≈ 2. We use a sample of BzK-selected star-forming galaxies, drawn from the Cosmic Evolution Survey, to perform a stacking analysis of their 1.4 GHz radio continuum as a function of different stellar population properties, after cleaning the sample from contamination by active galactic nuclei. Dust unbiased SFRs are derived from radio fluxes assuming the local radio-IR correlation. The main results of this work are: (1) specific star formation rate (SSFR)s are constant over about 1 dex in stellar mass and up to the highest stellar mass probed, (2) the dust attenuation is a strong function of galaxy stellar mass with more massive galaxies being more obscured than lower mass objects, (3) a single value of the UV extinction applied to all galaxies would lead to a gross underestimate of the SFR in massive galaxies, (4) correcting the observed UV luminosities for dust attenuation based on the Calzetti recipe provides results in very good agreement with the radio derived ones, (5) the mean SSFR of our sample steadily decreases by a factor of ~4 with decreasing redshift from z = 2.3 to 1.4 and a factor of ~40 down the local universe. These empirical SFRs would cause galaxies to dramatically overgrow in mass if maintained all the way to low redshifts; we suggest that this does not happen because star formation is progressively quenched, likely starting from the most massive galaxies.

410 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented an expanded sample of low-mass black holes (BHs) found in galactic nuclei, which provided observational analogs of primordial seed BHs and are expected, when merging, to provide strong gravitational signals for future detectors such as LISA.
Abstract: We present an expanded sample of low-mass black holes (BHs) found in galactic nuclei. Using standard virial mass techniques to estimate BH masses, we select from the Fourth Data Release of the Sloan Digital Sky Survey all broad-line active galaxies with masses <2 × 106 M☉. BHs in this mass regime provide unique tests of the relationship between BHs and galaxies, since their late-type galaxy hosts do not necessarily contain classical bulges. Furthermore, they provide observational analogs of primordial seed BHs and are expected, when merging, to provide strong gravitational signals for future detectors such as LISA. From our preliminary sample of 19, we have increased the total sample by an order of magnitude to 174, as well as an additional 55 (less secure) candidates. The sample has a median BH mass of MBH = 1.3 × 106 M☉, and in general the objects are radiating at high fractions of their Eddington limits. We investigate the broad spectral properties of the sample; 55 are detected by ROSAT, with soft X-ray luminosities in the range 1040 to 7 × 1043 ergs s-1. Much like the preliminary sample, these objects are predominantly radio-quiet (R ≡ f6cm/f4400A < 10), but 11 objects are detected at 20 cm, with radio powers (1021-1023 W Hz-1) that may arise from either star formation or nuclear activity; only 1% of the sample is radio-loud. We further confirm that, with Mg = -19.3 and g - r = 0.7 mag, the host galaxies are low-mass, late-type systems. At least 40% show disklike morphologies, and the combination of host galaxy colors and higher order Balmer absorption lines indicate intermediate-age stellar populations in a subset of the sample.

410 citations

Journal ArticleDOI
TL;DR: A relational database storing a large number of properties of haloes and galaxies and their merger trees, including stellar masses, star formation rates, metallicities, photometric measurements and mock gri images is made available for general use.

409 citations

Journal ArticleDOI
TL;DR: In this article, the authors introduce a feedback efficacy parameter to relate halo properties to those of the galaxies they host, in the sense that galaxies that have experienced the least star formation have been most impacted by feedback.
Abstract: The baryonic Tully-Fisher relation (BTFR) is an empirical relation between baryonic mass and rotation velocity in disk galaxies. It provides tests of galaxy formation models in ΛCDM and of alternative theories like modified Newtonian dynamics (MOND). Observations of gas-rich galaxies provide a measure of the slope and normalization of the BTFR that is more accurate (if less precise) than that provided by star-dominated spirals, as their masses are insensitive to the details of stellar population modeling. Recent independent data for such galaxies are consistent with Mb = AV 4 f with A = 47 ± 6 M ☉ km–4 s4. This is equivalent to MOND with a 0 = 1.3 ± 0.3 A s–2. The scatter in the data is consistent with being due entirely to observational uncertainties. It is unclear why the physics of galaxy formation in ΛCDM happens to pick out the relation predicted by MOND. We introduce a feedback efficacy parameter to relate halo properties to those of the galaxies they host. correlates with star formation rate and gas fraction in the sense that galaxies that have experienced the least star formation have been most impacted by feedback.

409 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the very simple morphology of these objects to search for star formation triggered by H ii regions, and to estimate the importance of this mode of star formation.
Abstract: Context. This study deals with infrared bubbles, the H ii regions they enclose, and triggered massive-star formation on their borders. Aims: We attempt to determine the nature of the bubbles observed by Spitzer in the Galactic plane, mainly to establish if possible their association with massive stars. We take advantage of the very simple morphology of these objects to search for star formation triggered by H ii regions, and to estimate the importance of this mode of star formation. Methods: We consider a sample of 102 bubbles detected by Spitzer-GLIMPSE, and catalogued by Churchwell et al. (2006; hereafter CH06). We use mid-infrared and radio-continuum public data (respectively the Spitzer-GLIMPSE and -MIPSGAL surveys and the MAGPIS and VGPS surveys) to discuss their nature. We use the ATLASGAL survey at 870 μm to search for dense neutral material collected on their borders. The 870 μm data traces the distribution of cold dust, thus of the dense neutral material where stars may form. Results: We find that 86% of the bubbles contain ionized gas detected by means of its radio-continuum emission at 20-cm. Thus, most of the bubbles observed at 8.0 μm enclose H ii regions ionized by O-B2 stars. This finding differs from the earlier CH06 results (~25% of the bubbles enclosing H ii regions). Ninety-eight percent of the bubbles exhibit 24 μm emission in their central regions. The ionized regions at the center of the 8.0 μm bubbles seem to be devoid of PAHs but contain hot dust. PAH emission at 8.0 μm is observed in the direction of the photodissociation regions surrounding the ionized gas. Among the 65 regions for which the angular resolution of the observations is high enough to resolve the spatial distribution of cold dust at 870 μm, we find that 40% are surrounded by cold dust, and that another 28% contain interacting condensations. The former are good candidates for the collect and collapse process, as they display an accumulation of dense material at their borders. The latter are good candidates for the compression of pre-existing condensations by the ionized gas. Thirteen bubbles exhibit associated ultracompact H ii regions in the direction of dust condensations adjacent to their ionization fronts. Another five show methanol masers in similar condensations. Conclusions: Our results suggest that more than a quarter of the bubbles may have triggered the formation of massive objects. Therefore, star formation triggered by H ii regions may be an important process, especially for massive-star formation. Appendices are only available in electronic form at http://www.aanda.org

409 citations


Network Information
Related Topics (5)
Elliptical galaxy
20.9K papers, 1M citations
99% related
Galaxy
109.9K papers, 4.7M citations
99% related
Active galactic nucleus
20.7K papers, 996.7K citations
99% related
Quasar
21.3K papers, 1M citations
98% related
Redshift
33.9K papers, 1.6M citations
98% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023742
20221,675
20211,238
20201,489
20191,497
20181,530