scispace - formally typeset
Search or ask a question
Topic

Star formation

About: Star formation is a research topic. Over the lifetime, 37405 publications have been published within this topic receiving 1808161 citations. The topic is also known as: astrogenesis.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a 3D model of vertically stratified gas stirred by discrete supernova explosions is constructed, including vertical gravitational fields and parameterized heating and cooling, and it is shown that energy injection occurs over a broad range of scales.
Abstract: To study how supernova feedback structures the turbulent interstellar medium, we construct 3D models of vertically stratified gas stirred by discrete supernova explosions, including vertical gravitational fields and parameterized heating and cooling. The models reproduce many observed characteristics of the Galaxy, such as global circulation of gas (i.e., galactic fountain) and the existence of cold dense clouds in the galactic disk. Global quantities of the model such as warm and hot gas filling factors in the midplane, mass fraction of thermally unstable gas, and the averaged vertical density profile are compared directly with existing observations and shown to be broadly consistent. We find that energy injection occurs over a broad range of scales. There is no single effective driving scale, unlike the usual assumption for idealized models of incompressible turbulence. However, >90% of the total kinetic energy is contained in wavelengths shortward of 200 pc. The shape of the kinetic energy spectrum differs substantially from that of the velocity power spectrum, which implies that the velocity structure varies with the gas density. Velocity structure functions demonstrate that the phenomenological theory proposed by Boldyrev is applicable to the medium. We show that it can be misleading to predict physical properties such as the stellar initial mass function based on numerical simulations that do not include self-gravity of the gas. Even if all the gas in turbulently Jeans-unstable regions in our simulation is assumed to collapse and form stars in local free-fall times, the resulting total collapse rate is significantly lower than the value consistent with the input supernova rate. Supernova-driven turbulence inhibits star formation globally rather than triggering it.

364 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed a model for the regulation of galactic star formation rates in disk galaxies, in which interstellar medium (ISM) heating by stellar UV plays a key role, by requiring that thermal and dynamical equilibrium are simultaneously satisfied within the diffuse gas, and that stars form at a rate proportional to the mass of the self-gravitating component.
Abstract: We develop a model for the regulation of galactic star formation rates ΣSFR in disk galaxies, in which interstellar medium (ISM) heating by stellar UV plays a key role. By requiring that thermal and (vertical) dynamical equilibrium are simultaneously satisfied within the diffuse gas, and that stars form at a rate proportional to the mass of the self-gravitating component, we obtain a prediction for ΣSFR as a function of the total gaseous surface density Σ and the midplane density of stars+dark matter ρsd. The physical basis of this relationship is that the thermal pressure in the diffuse ISM, which is proportional to the UV heating rate and therefore to ΣSFR, must adjust until it matches the midplane pressure value set by the vertical gravitational field. Our model applies to regions where Σ 100 M ☉ pc–2. In low-ΣSFR (outer-galaxy) regions where diffuse gas dominates, the theory predicts that . The decrease of thermal equilibrium pressure when ΣSFR is low implies, consistent with observations, that star formation can extend (with declining efficiency) to large radii in galaxies, rather than having a sharp cutoff at a fixed value of Σ. The main parameters entering our model are the ratio of thermal pressure to total pressure in the diffuse ISM, the fraction of diffuse gas that is in the warm phase, and the star formation timescale in self-gravitating clouds; all of these are (at least in principle) direct observables. At low surface density, our model depends on the ratio of the mean midplane FUV intensity (or thermal pressure in the diffuse gas) to the star formation rate, which we set based on solar-neighborhood values. We compare our results to recent observations, showing good agreement overall for azimuthally averaged data in a set of spiral galaxies. For the large flocculent spiral galaxies NGC 7331 and NGC 5055, the correspondence between theory and observation is remarkably close.

364 citations

Journal ArticleDOI
TL;DR: In this article, a global study of low mass, young stellar object (YSO) surface densities in nearby star forming regions based on a comprehensive collection of Spitzer Space Telescope surveys is presented.
Abstract: We present a global study of low mass, young stellar object (YSO) surface densities (�) in nearby (< 500 pc) star forming regions based on a comprehensive collection of Spitzer Space Telescope surveys. We show that the distribution of YSO surface densities in the solar neighbourhood is a smooth distribution, being adequately described by a lognormal function from a few to 10 3 YSOs per pc 2 , with a peak at � 22 stars pc

363 citations

Journal ArticleDOI
TL;DR: The Panchromatic Hubble Andromeda Treasury (PHAT) as discussed by the authors is an on-going HST Multicycle Treasury program to image ~1/3 of M31's star forming disk in 6 filters, from the UV to the NIR.
Abstract: The Panchromatic Hubble Andromeda Treasury (PHAT) is an on-going HST Multicycle Treasury program to image ~1/3 of M31's star forming disk in 6 filters, from the UV to the NIR. The full survey will resolve the galaxy into more than 100 million stars with projected radii from 0-20 kpc over a contiguous 0.5 square degree area in 828 orbits, producing imaging in the F275W and F336W filters with WFC3/UVIS, F475W and F814W with ACS/WFC, and F110W and F160W with WFC3/IR. The resulting wavelength coverage gives excellent constraints on stellar temperature, bolometric luminosity, and extinction for most spectral types. The photometry reaches SNR=4 at F275W=25.1, F336W=24.9, F475W=27.9, F814W=27.1, F110W=25.5, and F160W=24.6 for single pointings in the uncrowded outer disk; however, the optical and NIR data are crowding limited, and the deepest reliable magnitudes are up to 5 magnitudes brighter in the inner bulge. All pointings are dithered and produce Nyquist-sampled images in F475W, F814W, and F160W. We describe the observing strategy, photometry, astrometry, and data products, along with extensive tests of photometric stability, crowding errors, spatially-dependent photometric biases, and telescope pointing control. We report on initial fits to the structure of M31's disk, derived from the density of RGB stars, in a way that is independent of the assumed M/L and is robust to variations in dust extinction. These fits also show that the 10 kpc ring is not just a region of enhanced recent star formation, but is instead a dynamical structure containing a significant overdensity of stars with ages >1 Gyr. (Abridged)

363 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported the first results of an extensive new study of the Galactic center stellar cluster, which strongly supported the existence of a central dark mass of 3 × 106 M☉ (density ≥ 108.5 M≉ pc-3, M/L ≥ 10 M⌉/L ⌉) within 0.14 pc of the dynamic center.
Abstract: We report the first results of an extensive new study of the Galactic center stellar cluster. The central parsec is powered by a cluster of about two dozen luminous and helium-rich blue supergiants/Wolf-Rayet stars (Teff ~ 20,000-30,000 K) with ZAMS masses up to ~100 M☉. The most likely scenario for the formation of the massive stars is a small star formation burst between 3 × 106 and 7 × 106 years ago. In this scenario the Galactic center is presently in a short-lived, post-main-sequence "wind phase." In addition, there is evidence for another star formation event about 108 years ago, as well as for recently formed massive stars that may have been transported into the central core along with orbiting gas streamers. The radial velocity dispersion of 35 early- and late-type stars with distances of 1''-12'' from Sgr A* is 154 ± 19 km s-1. Our new results strongly favor the existence of a central dark mass of ~3 × 106 M☉ (density ≥ 108.5 M☉ pc-3, M/L ≥ 10 M☉/L☉) within 0.14 pc of the dynamic center.

363 citations


Network Information
Related Topics (5)
Elliptical galaxy
20.9K papers, 1M citations
99% related
Galaxy
109.9K papers, 4.7M citations
99% related
Active galactic nucleus
20.7K papers, 996.7K citations
99% related
Quasar
21.3K papers, 1M citations
98% related
Redshift
33.9K papers, 1.6M citations
98% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023742
20221,675
20211,238
20201,489
20191,497
20181,530