scispace - formally typeset
Search or ask a question
Topic

Star formation

About: Star formation is a research topic. Over the lifetime, 37405 publications have been published within this topic receiving 1808161 citations. The topic is also known as: astrogenesis.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a series of high-resolution cosmological simulations of galaxy formation to z = 0, spanning halo masses ∼ 10.8−10.13−M⊙, and stellar masses ∼10.4−10^(11)
Abstract: We present a series of high-resolution cosmological simulations of galaxy formation to z = 0, spanning halo masses ∼10^8–10^(13) M⊙, and stellar masses ∼10^4–10^(11) M⊙. Our simulations include fully explicit treatment of the multiphase interstellar medium and stellar feedback. The stellar feedback inputs (energy, momentum, mass, and metal fluxes) are taken directly from stellar population models. These sources of feedback, with zero adjusted parameters, reproduce the observed relation between stellar and halo mass up to M_(halo) ∼ 10^(12) M⊙. We predict weak redshift evolution in the M*–M_(halo) relation, consistent with current constraints to z > 6. We find that the M*–M_(halo) relation is insensitive to numerical details, but is sensitive to feedback physics. Simulations with only supernova feedback fail to reproduce observed stellar masses, particularly in dwarf and high-redshift galaxies: radiative feedback (photoheating and radiation pressure) is necessary to destroy giant molecular clouds and enable efficient coupling of later supernovae to the gas. Star formation rates (SFRs) agree well with the observed Kennicutt relation at all redshifts. The galaxy-averaged Kennicutt relation is very different from the numerically imposed law for converting gas into stars, and is determined by self-regulation via stellar feedback. Feedback reduces SFRs and produces reservoirs of gas that lead to rising late-time star formation histories, significantly different from halo accretion histories. Feedback also produces large short-time-scale variability in galactic SFRs, especially in dwarfs. These properties are not captured by common ‘sub-grid’ wind models.

1,310 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explored the impact of uncertainties in key phases of stellar evolution and the IMF on the derived physical properties of galaxies and the expected luminosity evolution for a passively evolving set of stars.
Abstract: The stellar masses, mean ages, metallicities, and star formation histories of galaxies are now commonly estimated via stellar population synthesis (SPS) techniques. SPS relies on stellar evolution calculations from the main sequence to stellar death, stellar spectral libraries, phenomenological dust models, and stellar initial mass functions (IMFs). The present work is the first in a series that explores the impact of uncertainties in key phases of stellar evolution and the IMF on the derived physical properties of galaxies and the expected luminosity evolution for a passively evolving set of stars. A Monte-Carlo Markov-Chain approach is taken to fit near-UV through near-IR photometry of a representative sample of low- and high-redshift galaxies with this new SPS model. Significant results include the following: 1) including uncertainties in stellar evolution, stellar masses at z~0 carry errors of ~0.3 dex at 95% CL with little dependence on luminosity or color, while at z~2, the masses of bright red galaxies are uncertain at the ~0.6 dex level; 2) either current stellar evolution models, current observational stellar libraries, or both, do not adequately characterize the metallicity-dependence of the thermally-pulsating asymptotic giant branch phase; 3) conservative estimates on the uncertainty of the slope of the IMF in the solar neighborhood imply that luminosity evolution per unit redshift is uncertain at the ~0.4 mag level in the K-band, which is a substantial source of uncertainty for interpreting the evolution of galaxy populations across time; 4) The more plausible assumption of a distribution of stellar metallicities, rather than a fixed value as is usually assumed, can have significant effects on the interpretation of colors blueward of the V-band. (ABRIDGED)

1,303 citations

Journal ArticleDOI
TL;DR: In this article, the evolution of the mid-infrared local luminosity function with redshift to the spectrum of the cosmic infrared background (CIRB) at j[ 5 km and the galaxy counts from various surveys at midinfrared, far infrared, and submillimeter wavelengths was investigated.
Abstract: The mid-infrared local luminosity function is evolved with redshift to —t the spectrum of the cosmic infrared background (CIRB) at j[ 5 km and the galaxy counts from various surveys at mid-infrared, far-infrared, and submillimeter wavelengths. A variety of evolutionary models provide satisfactory —ts to the CIRB and the number counts. The degeneracy in the range of models cannot be broken by current observations. However, the diUerent evolutionary models yield approximately the same comoving number density of infrared luminous galaxies as a function of redshift. Since the spectrum of the cosmic background at j[ 200 km is quite sensitive to the evolution at high redshift, i.e., z [ 1, all models that —t the counts require a —attening at z D 0.8 to avoid overproducing the CIRB. About 80% of the 140 km CIRB is produced at 0 \ z \ 1.5, while only about 30% of the 850 km background is produced within the same redshift range. The nature of the evolution is then translated into a measure of the dustenshrouded star formation rate (SFR) density as a function of redshift and compared with estimates from rest-frame optical/ultraviolet surveys. The dust-enshrouded SFR density appears to peak at z \ 0.8 ^ 0.1, much sooner than previously thought, with a value of yr~1 Mpc~3, and remains almost 0.25 ~0.10.12 M _ constant up to z D 2. At least 70% of this star formation takes place in infrared luminous galaxies with The long-wavelength observations that constrain our evolutionary models do not strongL IR [ 1011 L _ . ly trace the evolution at z [ 2 and a drop-oU in the dust-enshrouded SFR density is consistent with both the CIRB spectrum and the number counts. However, a comparison with the infrared luminosity function derived from extinction-corrected rest-frame optical/ultraviolet observations of the Lyman break galaxy population at z D 3 suggests that the almost —at comoving SFR density seen between redshifts of 0.8 and 2 extends up to a redshift of z D 4. (%)

1,292 citations

Journal ArticleDOI
TL;DR: The SIRTF Nearby Galaxy Survey (SINGS) as mentioned in this paper is a comprehensive infrared imaging and spectroscopic survey of 75 nearby galaxies and its primary goal is to characterize the infrared emission of galaxies and their principal infrared-emitting components across a broad range of galaxy properties and star formation environments.
Abstract: The SIRTF Nearby Galaxy Survey is a comprehensive infrared imaging and spectroscopic survey of 75 nearby galaxies. Its primary goal is to characterize the infrared emission of galaxies and their principal infrared-emitting components, across a broad range of galaxy properties and star formation environments. SINGS will provide new insights into the physical processes connecting star formation to the interstellar medium properties of galaxies and provide a vital foundation for understanding infrared observations of the distant universe and ultraluminous and active galaxies. The galaxy sample and observing strategy have been designed to maximize the scientific and archival value of the data set for the SIRTF user community at large. The SIRTF images and spectra will be supplemented by a comprehensive multiwavelength library of ancillary and complementary observations, including radio continuum, H i, CO, submillimeter, BVRIJHK ,H a ,P aa, ultraviolet, and X-ray data. This paper describes the main astrophysical issues to be addressed by SINGS, the galaxy sample and the observing strategy, and the SIRTF and other ancillary data products.

1,284 citations

Journal ArticleDOI
TL;DR: In this paper, high-resolution X-ray spectroscopy of the hot gas in galaxy clusters has shown that the gas is not cooling to low temperatures at the predicted rates of hundreds to thousands of solar masses per year.
Abstract: High resolution X-ray spectroscopy of the hot gas in galaxy clusters has shown that the gas is not cooling to low temperatures at the predicted rates of hundreds to thousands of solar masses per year. X-ray images have revealed giant cavities and shock fronts in the hot gas that provide a direct and relatively reliable means of measuring the energy injected into hot atmospheres by active galactic nuclei (AGN). Average radio jet powers are near those required to offset radiative losses and to suppress cooling in isolated giant elliptical galaxies, and in larger systems up to the richest galaxy clusters. This coincidence suggests that heating and cooling are coupled by feedback, which suppresses star formation and the growth of luminous galaxies. How jet energy is converted to heat and the degree to which other heating mechanisms are contributing, e.g., thermal conduction, are not well understood. Outburst energies require substantial late growth of supermassive black holes. Unless all of the ∼10 62 erg required to suppress star formation is deposited in the cooling regions of clusters, AGN outbursts must alter large-scale properties of the intracluster medium.

1,283 citations


Network Information
Related Topics (5)
Elliptical galaxy
20.9K papers, 1M citations
99% related
Galaxy
109.9K papers, 4.7M citations
99% related
Active galactic nucleus
20.7K papers, 996.7K citations
99% related
Quasar
21.3K papers, 1M citations
98% related
Redshift
33.9K papers, 1.6M citations
98% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023742
20221,675
20211,238
20201,489
20191,497
20181,530