scispace - formally typeset
Search or ask a question
Topic

Star formation

About: Star formation is a research topic. Over the lifetime, 37405 publications have been published within this topic receiving 1808161 citations. The topic is also known as: astrogenesis.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the equilibrium of self-gravitating isothermal models of interstellar clouds with a frozen-in magnetic field linked smoothly to the field of a hot tenuous intercloud medium is determined.
Abstract: The paper studies the equilibrium of self-gravitating isothermal models of interstellar clouds with a frozen-in magnetic field linked smoothly to the field of a hot tenuous intercloud medium. Equilibrium states are determined which can be reached by clouds contracting nonhomologously from a spherical uniform initial state. Three free parameters characterize the problem: a dimensionless initial radius related to the Jeans length of the cloud, the initial ratio of the magnetic and gas pressures in the cloud, and the initial ratio of the intercloud and cloud pressures. The dependence of the solutions on each of these parameters is investigated. It is found that: (1) the frozen-in field causes the cloud to become oblate with its major axis normal to the field lines; (2) the flattening increases as the magnetic-field strength, gravitational forces, or intercloud pressure increases; (3) increasing intercloud pressure eventually leads to gravitational collapse; and (4) the cloud can reach equilibrium only if its radius does not exceed some critical value. The observed inefficiency of the star-formation process within massive clouds is examined and explained in terms of magnetic phenomena in a collapsing cloud.

303 citations

Journal ArticleDOI
TL;DR: In this paper, the Toomre parameter for gravitational instability and the porosity of the interstellar medium to supernova remnant-heated gas were used to explain the Tully-Fisher relation.
Abstract: Self-regulation of star formation in disks is controlled by two dimensionless parameters: the Toomre parameter for gravitational instability and the porosity of the interstellar medium to supernova remnant-heated gas. An interplay between these leads to expressions for the gas velocity dispersion, gas fraction, star formation rate and star formation efficiency in disks and to a possible explanation of the Tully-Fisher relation. I further develop feedback arguments that arise from the impact of massive star formation and death on protogalaxies in order to account for the characteristic luminosity of a galaxy and for early winds from forming spheroids.

303 citations

Journal ArticleDOI
TL;DR: In this paper, the global scaling relations and fundamental planes linking stars and gas for a sample of 9417 common galaxies: the α.40-SDSS-GALEX sample were derived from the ALFALFA data set.
Abstract: Making use of H I 21 cm line measurements from the ALFALFA survey (α.40) and photometry from the Sloan Digital Sky Survey (SDSS) and Galaxy Evolution Explorer (GALEX), we investigate the global scaling relations and fundamental planes linking stars and gas for a sample of 9417 common galaxies: the α.40-SDSS-GALEX sample. In addition to their H I properties derived from the ALFALFA data set, stellar masses (M *) and star formation rates (SFRs) are derived from fitting the UV-optical spectral energy distributions. 96% of the α.40-SDSS-GALEX galaxies belong to the blue cloud, with the average gas fraction f H I ≡ M H I /M * ~ 1.5. A transition in star formation (SF) properties is found whereby below M * ~ 109.5 M ☉, the slope of the star-forming sequence changes, the dispersion in the specific star formation rate (SSFR) distribution increases, and the star formation efficiency (SFE) mildly increases with M *. The evolutionary track in the SSFR-M * diagram, as well as that in the color-magnitude diagram, is linked to the H I content; below this transition mass, the SF is regulated strongly by the H I. Comparison of H I and optically selected samples over the same restricted volume shows that the H I-selected population is less evolved and has overall higher SFR and SSFR at a given stellar mass, but lower SFE and extinction, suggesting either that a bottleneck exists in the H I-to-H2 conversion or that the process of SF in the very H I-dominated galaxies obeys an unusual, low-efficiency SF law. A trend is found that, for a given stellar mass, high gas fraction galaxies reside preferentially in dark matter halos with high spin parameters. Because it represents a full census of H I-bearing galaxies at z ~ 0, the scaling relations and fundamental planes derived for the ALFALFA population can be used to assess the H I detection rate by future blind H I surveys and intensity mapping experiments at higher redshift.

303 citations

Journal ArticleDOI
09 Mar 2006-Nature
TL;DR: In this paper, the authors present detailed observations of the γ-ray, X-ray and near-infrared and optical spectra of the afterglow of GRB 050904.
Abstract: The γ-ray burst GRB 050904, detected by the Swift satellite on 4 September last year, is one of the most distant objects ever observed. Its redshift of z = 6.3 equates to an explosion taking place 12.8 billion years ago, when the Universe was a mere 890 million years old. Three groups this week present detailed observations of the γ-ray, X-ray, near-infrared and optical spectra of the afterglow of GRB 050904. The results begin to paint a picture of the conditions prevailing when the parent body exploded and suggest that the γ-ray bursts that we see in the future can be used by cosmologists to probe the early Universe for evidence of star and galaxy formation, nucleosynthesis and reionization. The prompt γ-ray emission from γ-ray bursts (GRBs) should be detectable out to distances of z > 10 (ref. 1), and should therefore provide an excellent probe of the evolution of cosmic star formation, reionization of the intergalactic medium, and the metal enrichment history of the Universe1,2,3,4. Hitherto, the highest measured redshift for a GRB has been z = 4.50 (ref. 5). Here we report the optical spectrum of the afterglow of GRB 050904 obtained 3.4 days after the burst; the spectrum shows a clear continuum at the long-wavelength end of the spectrum with a sharp cut-off at around 9,000 A due to Lyman α absorption at z ≈ 6.3 (with a damping wing). A system of absorption lines of heavy elements at z = 6.295 ± 0.002 was also detected, yielding the precise measurement of the redshift. The Si ii fine-structure lines suggest a dense, metal-enriched environment around the progenitor of the GRB.

303 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a budget and accounting of metals in and around star-forming galaxies at z ∼ 0.6m and show that a surprisingly constant 20% to 25% mass fraction of produced metals remain in galaxies' stars, interstellar gas and interstellar dust, with little dependence of this fraction on the galaxy stellar mass.
Abstract: We present a budget and accounting of metals in and around star-forming galaxies at z ∼ 0. We combine empirically derived star formation histories with updated supernova and AGB yields and rates to estimate the total mass of metals produced by galaxies with present-day stellar mass of 10 9.3 – 10 11.6 M⊙. On the accounting side of the ledger, we show that a surprisingly constant 20–25% mass fraction of produced metals remain in galaxies’ stars, interstellar gas and interstellar dust, with little dependence of this fraction on the galaxy stellar mass (omitting those metals immediately locked up in remnants). Thus, the bulk of metals are outside of galaxies, produced in the progenitors of today’s L ∗ galaxies. The COS-Halos survey is uniquely able to measure the mass of metals in the circumgalactic medium (to impact parameters of < 150kpc) of low-redshift ∼ L ∗ galaxies. Using these data, we map the distribution of CGM metals as traced by both the highly ionized O VI ion and a suite of low-ionization species; combined with constraints on circumgalactic dust and hotter X-ray emitting gas out to similar impact parameters, we show that ∼ 40% of metals produced by M⋆ ∼ 10 10 M⊙ galaxies can be easily accounted for out to 150kpc. With the current data, we cannot rule out a constant mass of metals within this fixed physical radius. This census provides a crucial boundary condition for the eventual fate of metals in galaxy evolution models.

303 citations


Network Information
Related Topics (5)
Elliptical galaxy
20.9K papers, 1M citations
99% related
Galaxy
109.9K papers, 4.7M citations
99% related
Active galactic nucleus
20.7K papers, 996.7K citations
99% related
Quasar
21.3K papers, 1M citations
98% related
Redshift
33.9K papers, 1.6M citations
98% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023742
20221,675
20211,238
20201,489
20191,497
20181,530