scispace - formally typeset
Search or ask a question
Topic

Star formation

About: Star formation is a research topic. Over the lifetime, 37405 publications have been published within this topic receiving 1808161 citations. The topic is also known as: astrogenesis.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors measured the galaxy stellar mass function and star formation rates for samples of galaxies at the CANDELS GOODS South field using deep near-infrared observations.
Abstract: We measure new estimates for the galaxy stellar mass function and star formation rates for samples of galaxies at $z \sim 4,~5,~6~\&~7$ using data in the CANDELS GOODS South field. The deep near-infrared observations allow us to construct the stellar mass function at $z \geq 6$ directly for the first time. We estimate stellar masses for our sample by fitting the observed spectral energy distributions with synthetic stellar populations, including nebular line and continuum emission. The observed UV luminosity functions for the samples are consistent with previous observations, however we find that the observed $M_{UV}$ - M$_{*}$ relation has a shallow slope more consistent with a constant mass to light ratio and a normalisation which evolves with redshift. Our stellar mass functions have steep low-mass slopes ($\alpha \approx -1.9$), steeper than previously observed at these redshifts and closer to that of the UV luminosity function. Integrating our new mass functions, we find the observed stellar mass density evolves from $\log_{10} \rho_{*} = 6.64^{+0.58}_{-0.89}$ at $z \sim 7$ to $7.36\pm0.06$ $\text{M}_{\odot} \text{Mpc}^{-3}$ at $z \sim 4$. Finally, combining the measured UV continuum slopes ($\beta$) with their rest-frame UV luminosities, we calculate dust corrected star-formation rates (SFR) for our sample. We find the specific star-formation rate for a fixed stellar mass increases with redshift whilst the global SFR density falls rapidly over this period. Our new SFR density estimates are higher than previously observed at this redshift.

297 citations

Journal ArticleDOI
TL;DR: In this article, the results of a MOPED analysis of ∼3 × 10 5 galaxy spectra from the Sloan Digital Sky Survey Data Release 3 (SDSS DR3), with a number of improvements in data, modelling and analysis compared with their previous analysis of DR1.
Abstract: We present the results of a MOPED analysis of ∼3 × 10 5 galaxy spectra from the Sloan Digital Sky Survey Data Release 3 (SDSS DR3), with a number of improvements in data, modelling and analysis compared with our previous analysis of DR1. The improvements include: modelling the galaxies with theoretical models at a higher spectral resolution of 3 A, better calibrated data, an extended list of excluded emission lines and a wider range of dust models. We present new estimates of the cosmic star formation rate (SFR), the evolution of stellar mass density and the stellar mass function from the fossil record. In contrast to our earlier work the results show no conclusive peak in the SFR out to a redshift around 2 but continue to show conclusive evidence for ‘downsizing’ in the SDSS fossil record. The star formation history is now in good agreement with more traditional instantaneous measures. The galaxy stellar mass function is determined over five decades of mass, and an updated estimate of the current stellar mass density is presented. We also investigate the systematic effects of changes in the stellar population modelling, the spectral resolution, dust modelling, sky lines, spectral resolution and the change of data set. We find that the main changes in the results are due to the improvements in the calibration of the SDSS data, changes in the initial mass function and the theoretical models

297 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the current theory of how galaxies form within the cosmological framework provided by the cold dark matter paradigm for structure formation and highlight successes and failures of current galaxy formation theory.

297 citations

Journal ArticleDOI
TL;DR: In this paper, the spectroscopic properties and environments of red (or passive) spiral galaxies found by the Galaxy Zoo project were studied. But there are no obvious correlations between red spiral properties and environment suggesting that environment alone is not sufficient to determine whether a galaxy will become a red spiral.
Abstract: We study the spectroscopic properties and environments of red (or passive) spiral galaxies found by the Galaxy Zoo project. By carefully selecting face-on disc-dominated spirals, we construct a sample of truly passive discs (i.e. they are not dust reddened spirals, nor are they dominated by old stellar populations in a bulge). As such, our red spirals represent an interesting set of possible transition objects between normal blue spiral galaxies and red early types, making up ∼6 per cent of late-type spirals. We use optical images and spectra from Sloan Digital Sky Survey to investigate the physical processes which could have turned these objects red without disturbing their morphology. We find red spirals preferentially in intermediate density regimes. However, there are no obvious correlations between red spiral properties and environment suggesting that environment alone is not sufficient to determine whether a galaxy will become a red spiral. Red spirals are a very small fraction of all spirals at low masses (M★ < 1010 M⊙), but are a significant fraction of the spiral population at large stellar masses showing that massive galaxies are red independent of morphology. We confirm that as expected, red spirals have older stellar populations and less recent star formation than the main spiral population. While the presence of spiral arms suggests that a major star formation could not have ceased a long ago (not more than a few Gyr), we show that these are also not recent post-starburst objects (having had no significant star formation in the last Gyr), so star formation must have ceased gradually. Intriguingly, red spirals are roughly four times as likely than the normal spiral population to host optically identified Seyfert/low-ionization nuclear emission region (LINER; at a given stellar mass and even accounting for low-luminosity lines hidden by star formation), with most of the difference coming from the objects with LINER-like emission. We also find a curiously large optical bar fraction in the red spirals (70 ± 5 verses 27 ± 5 per cent in blue spirals) suggesting that the cessation of star formation and bar instabilities in spirals are strongly correlated. We conclude by discussing the possible origins of these red spirals. We suggest that they may represent the very oldest spiral galaxies which have already used up their reserves of gas – probably aided by strangulation or starvation, and perhaps also by the effect of bar instabilities moving material around in the disc. We provide an online table listing our full sample of red spirals along with the normal/blue spirals used for comparison.

297 citations

Journal ArticleDOI
TL;DR: In this paper, the first protostars gain sufficient mass to ionize the accretion flow, their H II regions are initially gravitationally trapped, but soon begin to rapidly fluctuate between trapped and extended states, in agreement with observations.
Abstract: We describe the first three-dimensional simulation of the gravitational collapse of a massive, rotating molecular cloud that includes heating by both non-ionizing and ionizing radiation. These models were performed with the FLASH code, incorporating a hybrid, long characteristic, ray-tracing technique. We find that as the first protostars gain sufficient mass to ionize the accretion flow, their H II regions are initially gravitationally trapped, but soon begin to rapidly fluctuate between trapped and extended states, in agreement with observations. Over time, the same ultracompact H II region can expand anisotropically, contract again, and take on any of the observed morphological classes. In their extended phases, expanding H II regions drive bipolar neutral outflows characteristic of high-mass star formation. The total lifetime of H II regions is given by the global accretion timescale, rather than their short internal sound-crossing time. This explains the observed number statistics. The pressure of the hot, ionized gas does not terminate accretion. Instead, the final stellar mass is set by fragmentation-induced starvation. Local gravitational instabilities in the accretion flow lead to the build-up of a small cluster of stars, all with relatively high masses due to heating from accretion radiation. These companions subsequently compete with the initial high-mass star for the same common gas reservoir and limit its mass growth. This is in contrast to the classical competitive accretion model, where the massive stars are never hindered in growth by the low-mass stars in the cluster. Our findings show that the most significant differences between the formation of low-mass and high-mass stars are all explained as the result of rapid accretion within a dense, gravitationally unstable, ionized flow.

297 citations


Network Information
Related Topics (5)
Elliptical galaxy
20.9K papers, 1M citations
99% related
Galaxy
109.9K papers, 4.7M citations
99% related
Active galactic nucleus
20.7K papers, 996.7K citations
99% related
Quasar
21.3K papers, 1M citations
98% related
Redshift
33.9K papers, 1.6M citations
98% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023742
20221,675
20211,238
20201,489
20191,497
20181,530