scispace - formally typeset
Search or ask a question
Topic

Star formation

About: Star formation is a research topic. Over the lifetime, 37405 publications have been published within this topic receiving 1808161 citations. The topic is also known as: astrogenesis.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a nonnegative matrix factorization (NVMF) approach is proposed to construct model-based template sets given a set of heterogeneous photometric and spectroscopic galaxy data.
Abstract: Template fits to observed galaxy fluxes allow calculation of K-corrections and conversions among observations of galaxies at various wavelengths. We present a method for creating model-based template sets given a set of heterogeneous photometric and spectroscopic galaxy data. Our technique, nonnegative matrix factorization, is akin to principal component analysis (PCA), except that it is constrained to produce nonnegative templates, it can use a basis set of models (rather than the delta-function basis of PCA), and it naturally handles uncertainties, missing data, and heterogeneous data (including broadband fluxes at various redshifts). The particular implementation we present here is suitable for ultraviolet, optical, and near-infrared observations in the redshift range 0 < z < 1.5. Since we base our templates on stellar population synthesis models, the results are interpretable in terms of approximate stellar masses and star formation histories. We present templates fitted with this method to data from Galaxy Evolution Explorer, Sloan Digital Sky Survey spectroscopy and photometry, the Two Micron All Sky Survey, the Deep Extragalactic Evolutionary Probe, and the Great Observatories Origins Deep Survey. In addition, we present software for using such data to estimate K-corrections.

1,774 citations

Journal ArticleDOI
TL;DR: In this article, the authors combined information drawn from studies of individual clouds into a combined and updated statistical analysis of star-formation rates and efficiencies, numbers and lifetimes for spectral energy distribution (SED) classes, and clustering properties.
Abstract: The c2d Spitzer Legacy project obtained images and photometry with both IRAC and MIPS instruments for five large, nearby molecular clouds. Three of the clouds were also mapped in dust continuum emission at 1.1 mm, and optical spectroscopy has been obtained for some clouds. This paper combines information drawn from studies of individual clouds into a combined and updated statistical analysis of star-formation rates and efficiencies, numbers and lifetimes for spectral energy distribution (SED) classes, and clustering properties. Current star-formation efficiencies range from 3% to 6%; if star formation continues at current rates for 10 Myr, efficiencies could reach 15-30%. Star-formation rates and rates per unit area vary from cloud to cloud; taken together, the five clouds are producing about 260 M ☉ of stars per Myr. The star-formation surface density is more than an order of magnitude larger than would be predicted from the Kennicutt relation used in extragalactic studies, reflecting the fact that those relations apply to larger scales, where more diffuse matter is included in the gas surface density. Measured against the dense gas probed by the maps of dust continuum emission, the efficiencies are much higher, with stellar masses similar to masses of dense gas, and the current stock of dense cores would be exhausted in 1.8 Myr on average. Nonetheless, star formation is still slow compared to that expected in a free-fall time, even in the dense cores. The derived lifetime for the Class I phase is 0.54 Myr, considerably longer than some estimates. Similarly, the lifetime for the Class 0 SED class, 0.16 Myr, with the notable exception of the Ophiuchus cloud, is longer than early estimates. If photometry is corrected for estimated extinction before calculating class indicators, the lifetimes drop to 0.44 Myr for Class I and to 0.10 for Class 0. These lifetimes assume a continuous flow through the Class II phase and should be considered median lifetimes or half-lives. Star formation is highly concentrated to regions of high extinction, and the youngest objects are very strongly associated with dense cores. The great majority (90%) of young stars lie within loose clusters with at least 35 members and a stellar density of 1 M ☉ pc–3. Accretion at the sound speed from an isothermal sphere over the lifetime derived for the Class I phase could build a star of about 0.25 M ☉, given an efficiency of 0.3. Building larger mass stars by using higher mass accretion rates could be problematic, as our data confirm and aggravate the "luminosity problem" for protostars. At a given T bol, the values for L bol are mostly less than predicted by standard infall models and scatter over several orders of magnitude. These results strongly suggest that accretion is time variable, with prolonged periods of very low accretion. Based on a very simple model and this sample of sources, half the mass of a star would be accreted during only 7% of the Class I lifetime, as represented by the eight most luminous objects.

1,752 citations

Journal ArticleDOI
TL;DR: In this paper, the problem of the gravitational collapse of isothermal spheres by applying the similarity method to the gas-dynamic flow is considered, and two types of similarity solutions are obtained: one is the prototype for starting states which correspond to unstable hydrostatic equilibrium; the other, for states where the mass of the cloud slightly exceeds the maximum limit allowable for hydrostatic equilibria.
Abstract: We consider the problem of the gravitational collapse of isothermal spheres by applying the similarity method to the gas-dynamic flow. We argue that a previous solution obtained by Larson and Penston to describe the stages prior to core formation is physically artificial; however, we find that the flow following core formation does exhibit self-similar properties.The latter similarity solution shows that the inflow in the dense central regions proceeds virtually at free-fall before the material is arrested by a strong radiating shock upon impact with the surface of the core. Two types of similarity solutions are obtained: one is the prototype for starting states which correspond to unstable hydrostatic equilibrium; the other, for states where the mass of the cloud slightly exceeds the maximum limit allowable for hydrostatic equilibrium. In both cases, an r/sup -2/ law holds for the density distribution in the static or nearly static outer envelope, and an r/sup -3///sup 2/ law holds for the freely falling inner envelope. Rapid infall is initiated at the head of the expansion wave associated with the dropping of the central regions from beneath the envelope. A numerical example is presented which is shown to be in good agreement with the envelopemore » dynamics obtained in previous studies of star formation using hydrodynamic codes.« less

1,747 citations

Journal ArticleDOI
TL;DR: In this paper, the results of spectroscopic studies with the LRIS spectrograph on Keck of two of the Hawaii deep survey fields were presented, and the evolution of the rest-frame K-band luminosity function and its evolution with redshift were described.
Abstract: We present the results of spectroscopic studies with the LRIS spectrograph on Keck of two of the Hawaii deep survey fields. The 393 objects observed cover an area of 26.2 square arcmin and constitute a nearly complete sample down to K = 20, I = 23, and B = 24.5. The rest-frame K-band luminosity function and its evolution with redshift are described. Comparisons are made with other optically selected (B and I) samples in the literature, and the corresponding rest-frame B-band luminosity function evolution is presented. The B-band counts near B = 24 are shown to be a mixture of normal galaxies at modest redshifts and galaxies undergoing rapid star formation, which have a wide range of masses and which are spread over the redshift interval from z = 0.2 to beyond z = 1.7. The luminosity functions, number counts, and color distributions at optical and IR wavelengths are discussed in terms of a consistent picture of the star-forming history of the galaxy sample. [OII] emission-line diagnostics or rest-frame ultra-violet--infrared color information are used in combination with rest-frame absolute K magnitudes to construct a ``fundamental plane'' in which the evolution of the global star-formation rate with redshift can be shown, and we find that the maximum rest-frame K luminosity of galaxies undergoing rapid star formation has been declining smoothly with decreasing redshift from a value near L* at z > 1. This smooth decrease in the characteristic luminosity of galaxies dominated by star formation can simultaneously account for the high B-band galaxy counts at faint magnitudes and the redshift distribution at z < 1 in both the B- and K-selected samples. Finally, the overall K-band light density evolution is discussed as a tracer of the baryonic mass in stars and compared with the rate of star formation.

1,738 citations

Journal ArticleDOI
Pavel Kroupa1
04 Jan 2002-Science
TL;DR: Combining IMF estimates for different populations in which the stars can be observed individually unveils an extraordinary uniformity of the IMF, which appears to hold for populations including present-day star formation in small molecular clouds.
Abstract: The distribution of stellar masses that form in one star formation event in a given volume of space is called the initial mass function (IMF). The IMF has been estimated from low-mass brown dwarfs to very massive stars. Combining IMF estimates for different populations in which the stars can be observed individually unveils an extraordinary uniformity of the IMF. This general insight appears to hold for populations including present-day star formation in small molecular clouds, rich and dense massive star-clusters forming in giant clouds, through to ancient and metal-poor exotic stellar populations that may be dominated by dark matter. This apparent universality of the IMF is a challenge for star formation theory, because elementary considerations suggest that the IMF ought to systematically vary with star-forming conditions.

1,733 citations


Network Information
Related Topics (5)
Elliptical galaxy
20.9K papers, 1M citations
99% related
Galaxy
109.9K papers, 4.7M citations
99% related
Active galactic nucleus
20.7K papers, 996.7K citations
99% related
Quasar
21.3K papers, 1M citations
98% related
Redshift
33.9K papers, 1.6M citations
98% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023742
20221,675
20211,238
20201,489
20191,497
20181,530