scispace - formally typeset
Search or ask a question
Topic

Star formation

About: Star formation is a research topic. Over the lifetime, 37405 publications have been published within this topic receiving 1808161 citations. The topic is also known as: astrogenesis.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a model for star formation and supernova feedback that describes the multi-phase structure of star forming gas on scales that are typically not resolved in cosmological simulations is presented.
Abstract: We present a model for star formation and supernova feedback that describes the multi-phase structure of star forming gas on scales that are typically not resolved in cosmological simulations Our approach includes radiative heating and cooling, the growth of cold clouds embedded in an ambient hot medium, star formation in these clouds, feedback from supernovae in the form of thermal heating and cloud evaporation, galactic winds and outflows, and metal enrichment Implemented using SPH, our scheme is a significantly modified and extended version of the grid-based method of Yepes et al (1997), and enables us to achieve high dynamic range in simulations of structure formation We discuss properties of the feedback model in detail and show that it predicts a self-regulated, quiescent mode of star formation, which, in particular, stabilises the star forming gaseous layers of disk galaxies The parameterisation of this mode can be reduced to a single free quantity which determines the overall timescale for star formation We fix this parameter to match the observed rates of star formation in local disk galaxies When normalised in this manner, cosmological simulations nevertheless overproduce the observed cosmic abundance of stellar material We are thus motivated to extend our feedback model to include galactic winds associated with star formation Using small-scale simulations of individual star-forming disk galaxies, we show that these winds produce either galactic fountains or outflows, depending on the depth of the gravitational potential Moreover, outflows from galaxies in these simulations drive chemical enrichment of the intergalactic medium, in principle accounting for the presence of metals in the Lyman alpha forest (abridged)

1,713 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the relationship between the local environment of galaxies and their star formation rate (SFR) in the Great Observatories Origins Deep Survey, GOODS, at z∼1.
Abstract: Aims We study the relationship between the local environment of galaxies and their star formation rate (SFR) in the Great Observatories Origins Deep Survey, GOODS, at z∼1 Methods We use ultradeep imaging at 24� m with the MIPS camera onboard Spitzer to determine the contribution of obscured light to the SFR of galaxies over the redshift range 08≤ z ≤12 Accurate galaxy densities are measured thanks to the large sample of ∼1200 spectroscopic redshifts with high (∼70 %) spectroscopic completeness Morphology and stellar masses are derived from deep HST-ACS imaging, supplemented by ground based imaging programs and photometry from the IRAC camera onboard Spitzer Results We show that the star formation‐density relation observed locally was reversed at z∼ 1: the average SFR of an individual galaxy increased with local galaxy density when the universe was less than half its present age Hierarchical galaxy for mation models (simulated lightcones from the Millennium model) predicted such a reversal to occur only at earlier epochs (z>2) and at a lower level We present a remarkable structure at z∼ 1016, containing X-ray traced galaxy concentrations, which will eventually merge into a Virgo-like cluster This structure illustrates how the ind ividual SFR of galaxies increases with density and shows that it is the∼1‐2 Mpc scale that affects most the star formation in galaxies at z∼ 1 The SFR of z∼ 1 galaxies is found to correlate with stellar mass suggesting that mass plays a role in the observed star formation‐density trend However the specific SFR ( =SFR/M⋆) decreases with stellar mass while it increases with galaxy density, which i mplies that the environment does directly affect the star formation activity of galaxies Major mergers do not appear to be the unique or even major cause for this effect since nearly half (46 %) of the luminous infrared galaxies (LIRGs) at z∼ 1 present the HST-ACS morphology of spirals, while only a third present a clear signature of major mergers The remaining galaxies are divided into compact (9 %) and irregular (14 %) galaxies Moreover, the specific SFR o f major mergers is only marginally stronger than that of spirals Conclusions These findings constrain the influence of the growth of large- scale structures on the star formation history of galaxies Reproducing the SFR‐density relation at z∼ 1 is a new challenge for models, requiring a correct balance between mass assembly through mergers and in-situ star formation at early epochs

1,696 citations

Journal ArticleDOI
TL;DR: In this article, the authors measured star formation rates (SFRs) of 50,000 optically selected galaxies in the local universe (z ≈ 0.1) by fitting the GALEX (ultraviolet) and SDSS photometry to a library of dustattenuated population synthesis models.
Abstract: We measure star formation rates (SFRs) of ≈50,000 optically selected galaxies in the local universe (z ≈ 0.1)—from gas-rich dwarfs to massive ellipticals. We obtain dust-corrected SFRs by fitting the GALEX (ultraviolet) and SDSS photometry to a library of dust-attenuated population synthesis models. For star-forming galaxies, our UV-based SFRs compare remarkably well with those from SDSS-measured emission lines (Hα). Deviations from perfect agreement are shown to be due to differences in the dust attenuation estimates. In contrast to Hα measurements, UV provides reliable SFRs for galaxies with weak Hα, and where Hα is contaminated with AGN emission (1/2 of the sample). Using full-SED SFRs, we calibrate a simple prescription that uses GALEX far- and near-UV magnitudes to produce dust-corrected SFRs for normal star-forming galaxies. The specific SFR is considered as a function of stellar mass for (1) star-forming galaxies with no AGNs, (2) those hosting an AGN, and (3) galaxies without Hα emission. We find that the three have distinct star formation histories, with AGNs lying intermediate between the star-forming and the quiescent galaxies. Star-forming galaxies without an AGN lie on a relatively narrow linear sequence. Remarkably, galaxies hosting a strong AGN appear to represent the massive continuation of this sequence. On the other hand, weak AGNs, while also massive, have lower SFRs, sometimes extending to the realm of quiescent galaxies. We propose an evolutionary sequence for massive galaxies that smoothly connects normal star-forming galaxies to quiescent galaxies via strong and weak AGNs. We confirm that some galaxies with no Hα show signs of star formation in the UV. We derive a cosmic star formation density at z = 0.1 with significantly smaller total error than previous measurements.

1,694 citations

Journal ArticleDOI
TL;DR: In this article, the authors derived ages, total metallicities, and element ratios of 124 early-type galaxies in high and low-density environments, and analyzed the data by comparison with mock galaxy samples created through Monte Carlo simulations taking the typical average observational errors into account.
Abstract: The aim of this paper is to set constraints on the epochs of early-type galaxy formation through the archaeology of the stellar populations in local galaxies. Using our models of absorption-line indices that account for variable abundance ratios, we derive ages, total metallicities, and element ratios of 124 early-type galaxies in high- and low-density environments. The data are analyzed by comparison with mock galaxy samples created through Monte Carlo simulations taking the typical average observational errors into account, in order to eliminate artifacts caused by correlated errors. We find that all three parameters, age, metallicity, and ?/Fe ratio, are correlated with velocity dispersion. We show that these results are robust against recent revisions of the local abundance pattern at high metallicities. To recover the observed scatter we need to assume an intrinsic scatter of about 20% in age, 0.08?dex in [Z/H], and 0.05?dex in [?/Fe]. All low-mass objects with M* 1010 M? (? 130 km s-1) show evidence for the presence of intermediate-age stellar populations with low ?/Fe ratios. About 20% of the intermediate-mass objects with 1010 M*/M? 1011 [110 ?/(km s-1) 230; both elliptical and lenticular galaxies] must have either a young subpopulation or a blue horizontal branch. On the basis of the above relationships, valid for the bulk of the sample, we show that the Mg-? relation is mainly driven by metallicity, with similar contributions from the ?/Fe ratio (23%) and age (17%). We further find evidence for an influence of the environment on the stellar population properties. Massive early-type galaxies in low-density environments seem on average ~2?Gyr younger and slightly (~0.05-0.1?dex) more metal-rich than their counterparts in high-density environments. No offsets in the ?/Fe ratios are instead detected. With the aid of a simple chemical evolution model, we translate the derived ages and ?/Fe ratios into star formation histories. We show that most star formation activity in early-type galaxies is expected to have happened between redshifts ~3 and 5 in high-density environments and between redshifts 1 and 2 in low-density environments. We conclude that at least 50% of the total stellar mass density must have already formed at z ~ 1, in good agreement with observational estimates of the total stellar mass density as a function of redshift. Our results suggest that significant mass growth in the early-type galaxy population below z ~ 1 must be restricted to less massive objects, and a significant increase of the stellar mass density between redshifts 1 and 2 should be present, caused mainly by the field galaxy population. The results of this paper further imply the presence of vigorous star formation episodes in massive objects at z ~ 2-5 and evolved elliptical galaxies around z ~ 1, both observationally identified as SCUBA galaxies and extremely red objects, respectively.

1,668 citations

Journal ArticleDOI
TL;DR: A review of the successes and problems of both the classical dynamical theory and the standard theory of magnetostatic support, from both observational and theoretical perspectives, is given in this paper.
Abstract: Understanding the formation of stars in galaxies is central to much of modern astrophysics. However, a quantitative prediction of the star formation rate and the initial distribution of stellar masses remains elusive. For several decades it has been thought that the star formation process is primarily controlled by the interplay between gravity and magnetostatic support, modulated by neutral-ion drift (known as ambipolar diffusion in astrophysics). Recently, however, both observational and numerical work has begun to suggest that supersonic turbulent flows rather than static magnetic fields control star formation. To some extent, this represents a return to ideas popular before the importance of magnetic fields to the interstellar gas was fully appreciated. This review gives a historical overview of the successes and problems of both the classical dynamical theory and the standard theory of magnetostatic support, from both observational and theoretical perspectives. The outline of a new theory relying on control by driven supersonic turbulence is then presented. Numerical models demonstrate that, although supersonic turbulence can provide global support, it nevertheless produces density enhancements that allow local collapse. Inefficient, isolated star formation is a hallmark of turbulent support, while efficient, clustered star formation occurs in its absence. The consequences of this theory are then explored for both local star formation and galactic-scale star formation. It suggests that individual star-forming cores are likely not quasistatic objects, but dynamically collapsing. Accretion onto these objects varies depending on the properties of the surrounding turbulent flow; numerical models agree with observations showing decreasing rates. The initial mass distribution of stars may also be determined by the turbulent flow. Molecular clouds appear to be transient objects forming and dissolving in the larger-scale turbulent flow, or else quickly collapsing into regions of violent star formation. Global star formation in galaxies appears to be controlled by the same balance between gravity and turbulence as small-scale star formation, although modulated by cooling and differential rotation. The dominant driving mechanism in star-forming regions of galaxies appears to be supernovae, while elsewhere coupling of rotation to the gas through magnetic fields or gravity may be important.

1,630 citations


Network Information
Related Topics (5)
Elliptical galaxy
20.9K papers, 1M citations
99% related
Galaxy
109.9K papers, 4.7M citations
99% related
Active galactic nucleus
20.7K papers, 996.7K citations
99% related
Quasar
21.3K papers, 1M citations
98% related
Redshift
33.9K papers, 1.6M citations
98% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023742
20221,675
20211,238
20201,489
20191,497
20181,530