scispace - formally typeset
Search or ask a question
Topic

Star formation

About: Star formation is a research topic. Over the lifetime, 37405 publications have been published within this topic receiving 1808161 citations. The topic is also known as: astrogenesis.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an H I aperture synthesis mosaic of the Large Magellanic Cloud (LMC), made by combining data from 1344 separate pointing centers using the Australia Telescope Compact Array (ATCA), was presented.
Abstract: We present the results of an H I aperture synthesis mosaic of the Large Magellanic Cloud (LMC), made by combining data from 1344 separate pointing centers using the Australia Telescope Compact Array (ATCA). The resolution of the mosaicked images is 10 (15 pc, using a distance to the LMC of 50 kpc). This mosaic, with a spatial resolution 15 times higher than that which had been previously obtained, emphasizes the turbulent and fractal structure of the ISM on the small scale, resulting from the dynamical feedback of the star formation processes with the ISM. The structure of the neutral atomic ISM in the LMC is dominated by H I filaments combined with numerous shells and holes. On the large scale, the H I disk appears to be remarkably symmetric and to have a well-organized and orderly, if somewhat complex, rotational field. The bulk of the H I resides in a disk 7.3 kpc in diameter. The mass of the disk component of the LMC is 2.5 × 109 M☉, and the upper limit to all mass within a radius of 4 kpc is ~3.5 × 109 M☉.

446 citations

Journal ArticleDOI
TL;DR: In this paper, the authors carried out a detailed study of the single-degenerate channel for the production of Type Ia supernova (SN Ia) progenitors, where a carbon/oxygen (CO) white dwarf (WD) accretes matter from an unevolved or slightly evolved non-degenate star until it reaches the Chandrasekhar mass limit.
Abstract: We have carried out a detailed studyh of one of the most favoured evolutionary channels for the production of Type Ia supernova (SN Ia) progenitors, the single-degenerate channel (CO + MS), where a carbon/oxygen (CO) white dwarf (WD) accretes matter from an unevolved or slightly evolved non-degenerate star until it reaches the Chandrasekhar mass limit. Employing Eggleton's stellar evolution code and adopting the prescription of Hachisu et al. for the accretion efficiency, we performed binary stellar evolution calculations for about 2300 close WD binary systems and mapped out the initial parameters in the orbital period-secondary mass (P-M(2)) plane (for a range of WD masses) which lead to a successful Type Ia supernova. We obtained accurate, analytical fitting formulae to describe this parameter range which can be used for binary population synthesis (BPS) studies. The contours in the P-M(2) plane differ from those obtained by Hachisu et al. for low-mass CO WDs, which are more common than massive CO WDs. We confirm that WDs with a mass as low as 0.67 M. can accrete efficiently and reach the Chandrasekhar limit. We have implemented these results in a BPS study to obtain the birth rates for SNe Ia and the evolution of birth rates with time of SNe Ia for both a constant star formation rate and a single starburst. The birth rates are lower than (but comparable to) those inferred observationally.

444 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigate massive star formation in turbulent, magnetized, parsec-scale clumps of molecular clouds including protostellar outflow feedback using three dimensional numerical simulations.
Abstract: We investigate massive star formation in turbulent, magnetized, parsec-scale clumps of molecular clouds including protostellar outflow feedback using three dimensional numerical simulations of effective resolution 2048{sup 3}. The calculations are carried out using a block structured adaptive mesh refinement code that solves the ideal MHD equations including self-gravity and implements accreting sink particles. We find that, in the absence of regulation by magnetic fields and outflow feedback, massive stars form readily in a turbulent, moderately condensed clump of {approx} 1,600 M{sub {circle_dot}} (containing {approx} 10{sup 2} initial Jeans masses), along with a cluster of hundreds of lower mass stars. The massive stars are fed at high rates by (1) transient dense filaments produced by large-scale turbulent compression at early times, and (2) by the clump-wide global collapse resulting from turbulence decay at late times. In both cases, the bulk of the massive star's mass is supplied from outside a 0.1 pc-sized 'core' that surrounds the star. In our simulation, the massive star is clump-fed rather than core-fed. The need for large-scale feeding makes the massive star formation prone to regulation by outflow feedback, which directly opposes the feeding processes. The outflows reduce the mass accretion rates onto the massive stars by breaking up the dense filaments that feed the massive star formation at early times, and by collectively slowing down the global collapse that fuel the massive star formation at late times. The latter is aided by a moderate magnetic field of strength in the observed range (corresponding to a dimensionless clump mass-to-flux ratio {lambda} {approx} a few); the field allows the outflow momenta to be deposited more efficiently inside the clump. We conclude that the massive star formation in our simulated turbulent, magnetized, parsec-scale clump is outflow-regulated and clump-fed (ORCF for short). An important implication is that the formation of low-mass stars in a dense clump can affect the formation of massive stars in the same clump, through their outflow feedback on the clump dynamics. In a companion paper, we discuss the properties of the lower mass cluster members formed along with the massive stars, including their mass distribution and spatial clustering.

443 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that repeated supernovae from an OB association will create a cavity of coronal gas in the interstellar medium, with radius greater than 100 pc, surrounded by a dense, expanding shell of cool interstellar gas.
Abstract: Stellar winds and repeated supernovae from an OB association will create a cavity of coronal gas in the interstellar medium, with radius greater than 100 pc, surrounded by a dense, expanding shell of cool interstellar gas. If the association has a typical initial mass function, its supernovae explosions will inject energy into the supershell at a nearly constant rate for about 50 Myr. The supershell loses its interior pressure and enters the snowplow phase when radiative cooling becomes important or when the shell bursts through the gas disk of a galaxy, typically after a few times 10 Myr and with a radius of 100-300 pc. At approximately the same time, the supershell becomes gravitationally unstable, forming giant molecular clouds which are sites for new star formation. There is widespread evidence for supershells in the Galaxy and other spiral and irregular galaxies from 21-cm emission-line surveys, optical emission-line surveys, and studies of supernova remnants. The gravitational instability of the supershells provides a physical mechanism for induced star formation and may account for bursts of star formation, especially in irregular galaxies.

442 citations

Journal ArticleDOI
TL;DR: In this article, the authors measured the specific luminosity density of star-forming galaxies at redshift 3.5 < z < 6 and found that the density was nearly constant with redshift over the range 3 < 6, although the measure at z ~ 6 remains relatively uncertain.
Abstract: We have measured the rest-frame λ ~ 1500 A comoving specific luminosity density of star-forming galaxies at redshift 3.5 < z < 6.5 (Lyman break galaxies [LBGs]) selected from deep, multiband images taken with the Hubble Space Telescope and the Advanced Camera for Surveys, obtained as part of the Great Observatories Origins Deep Survey (GOODS). The samples cover ~0.09 deg2 and are also relatively deep, reaching between 0.2L and 0.5L, depending on the redshift, where L is the characteristic UV luminosity of LBGs at z ~ 3. The specific luminosity density appears to be nearly constant with redshift over the range 3 < z < 6, although the measure at z ~ 6 remains relatively uncertain, because it depends on the accurate estimate of the faint counts of the z ~ 6 sample. If LBGs are fair tracers of the cosmic star formation activity, our results suggest that at z ~ 6, namely, at less than ~7% of the current cosmic age, the universe was already producing stars as vigorously as it did near its maximum several gigayears later, at 1 z 3.

442 citations


Network Information
Related Topics (5)
Elliptical galaxy
20.9K papers, 1M citations
99% related
Galaxy
109.9K papers, 4.7M citations
99% related
Active galactic nucleus
20.7K papers, 996.7K citations
99% related
Quasar
21.3K papers, 1M citations
98% related
Redshift
33.9K papers, 1.6M citations
98% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023742
20221,675
20211,238
20201,489
20191,497
20181,530