scispace - formally typeset
Search or ask a question
Topic

Star formation

About: Star formation is a research topic. Over the lifetime, 37405 publications have been published within this topic receiving 1808161 citations. The topic is also known as: astrogenesis.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present the quantitative rest-frame B morphological evolution and galaxy merger fraction at 0.2 1011 L 2.5% of the merged galaxies are disk galaxies and only 15% are considered major merger candidates.
Abstract: We present the quantitative rest-frame B morphological evolution and galaxy merger fraction at 0.2 1011 L☉ are disk galaxies, and only ~15% are classified as major merger candidates. Edge-on and dusty disk galaxies (Sb-Ir) are almost a third of the red sequence at z ~ 1.1, while E/S0/Sa make up over 90% of the red sequence at z ~ 0.3. Approximately 2% of our full sample are red mergers. We conclude (1) the merger rate does not evolve strongly between 0.2 < z < 1.2; (2) the decrease in the volume-averaged star formation rate density since z ~ 1 is a result of declining star formation in disk galaxies rather than a disappearing population of major mergers; (3) the build-up of the red sequence at z < 1 can be explained by a doubling in the number of spheroidal galaxies since z ~ 1.2.

441 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compared the properties of starburst-driven outflows in dwarf galaxies with those in more massive galaxies and showed that supershells are able to lift warm ionized gas out of the disk at rates up to several times the star formation rate.
Abstract: Properties of starburst-driven outflows in dwarf galaxies are compared with those in more massive galaxies. Over a factor of ~10 in galactic rotation speed, supershells are shown to lift warm ionized gas out of the disk at rates up to several times the star formation rate. The amount of mass escaping the galactic potential, in contrast to the disk, does depend on the galactic mass. The temperature of the hottest extended X-ray emission shows little variation around ~106.7 K, and this gas has enough energy to escape from the galaxies with rotation speed less than approximately 130 km s-1.

441 citations

Journal ArticleDOI
TL;DR: In this article, the physical processes of star formation are reviewed, with emphasis on processes occurring in molecular clouds like those observed nearby, and the most massive stars form in the densest environments by processes that are not yet well understood but may include violent interactions and mergers.
Abstract: Our current understanding of the physical processes of star formation is reviewed, with emphasis on processes occurring in molecular clouds like those observed nearby. The dense cores of these clouds are predicted to undergo gravitational collapse characterized by the runaway growth of a central density peak that evolves towards a singularity. As long as collapse can occur, rotation and magnetic fields do not change this qualitative behaviour. The result is that a very small embryonic star or protostar forms and grows by accretion at a rate that is initially high but declines with time as the surrounding envelope is depleted. Rotation causes some of the remaining matter to form a disk around the protostar, but accretion from protostellar disks is not well understood and may be variable. Most, and possibly all, stars form in binary or multiple systems in which gravitational interactions can play a role in redistributing angular momentum and driving episodes of disk accretion. Variable accretion may account for some peculiarities of young stars such as flareups and jet production, and protostellar interactions in forming systems of stars will also have important implications for planet formation. The most massive stars form in the densest environments by processes that are not yet well understood but may include violent interactions and mergers. The formation of the most massive stars may have similarities to the formation and growth of massive black holes in very dense environments.

440 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured mid-IR spectroscopic redshifts and place constraints on the contribution from star formation and AGN activity to the mid IR emission, finding that the hot dust continuum from an AGN contributes at most 30% of the midIR luminosity.
Abstract: We present deep mid-IR spectroscopy with Spitzer of 13 SMGs in the GOODS-N field. We find strong PAH emission in all of our targets, which allows us to measure mid-IR spectroscopic redshifts and place constraints on the contribution from star formation and AGN activity to the mid-IR emission. In the high-S/N composite spectrum, we find that the hot dust continuum from an AGN contributes at most 30% of the mid-IR luminosity. Individually, only 2/13 SMGs have continuum emission dominating the mid-IR luminosity; one of these SMGs, C1, remains undetected in the deep X-ray images but shows a steeply rising continuum in the mid-IR indicative of a Compton-thick AGN. We find that the mid-IR properties of SMGs are distinct from those of 24 μm-selected ULIRGs at z ~ 2; the former are predominantly dominated by star formation, while the latter are a more heterogeneous sample with many showing significant AGN activity. We fit the IRS spectrum and the mid-IR to radio photometry of SMGs with template SEDs to determine the best estimate of the total IR luminosity from star formation. While many SMGs contain an AGN as evinced by their X-ray properties, our multiwavelength analysis shows that the total IR luminosity, LIR, in SMGs is dominated by star formation. We find that high-redshift SMGs lie on the relation between LIR and LPAH ,6.2 (or LPAH ,7.7 or LPAH ,11.3) that has been established for local starburst galaxies. This suggests that PAH luminosity can be used as a proxy for the SFR in SMGs. SMGs are consistent with being a short-lived cool phase in a massive merger where the AGN does not appear to have become strong enough to heat the dust and dominate the mid- or far-IR emission.

440 citations

Journal ArticleDOI
TL;DR: In this article, the authors used a quantitative model for bipolar outflows driven by hydromagnetic protostellar winds to calculate the efficiency of star formation assuming that available gas is either converted into stars or ejected in outflows.
Abstract: Using a quantitative model for bipolar outflows driven by hydromagnetic protostellar winds, we calculate the efficiency of star formation assuming that available gas is either converted into stars or ejected in outflows. We estimate the efficiency of a single star formation event in a protostellar core, finding 25%-70% for cores with various possible degrees of flattening. The core mass function and the stellar initial mass function have similar slopes because the efficiency is not sensitive to its parameters. We then consider the disruption of gas from a dense molecular clump in which a cluster of young stars is being born. In both cases, we present analytical formulae for the efficiencies that compare favorably against observations and, for clusters, against numerical simulations. We predict efficiencies in the range of 30%-50% for the regions that form clusters of low-mass stars. In our model, star formation and gas dispersal happen concurrently. We neglect the destructive effects of massive stars: our results are therefore upper limits to the efficiency in regions more massive than about 3000 M☉ .

439 citations


Network Information
Related Topics (5)
Elliptical galaxy
20.9K papers, 1M citations
99% related
Galaxy
109.9K papers, 4.7M citations
99% related
Active galactic nucleus
20.7K papers, 996.7K citations
99% related
Quasar
21.3K papers, 1M citations
98% related
Redshift
33.9K papers, 1.6M citations
98% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023742
20221,675
20211,238
20201,489
20191,497
20181,530