Topic

# Starting vortex

About: Starting vortex is a research topic. Over the lifetime, 4785 publications have been published within this topic receiving 100419 citations.

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: In this article, the authors visualized the airflow around the wings of the hawkmoth Manduca sexta and a 'hovering' large mechanical model, and found an intense leading-edge vortex was found on the downstroke, of sufficient strength to explain the high-lift forces.

Abstract: INSECTS cannot fly, according to the conventional laws of aerodynamics: during flapping flight, their wings produce more lift than during steady motion at the same velocities and angles of attack1–5. Measured instantaneous lift forces also show qualitative and quantitative disagreement with the forces predicted by conventional aerodynamic theories6–9. The importance of high-life aerodynamic mechanisms is now widely recognized but, except for the specialized fling mechanism used by some insect species1,10–13, the source of extra lift remains unknown. We have now visualized the airflow around the wings of the hawkmoth Manduca sexta and a 'hovering' large mechanical model—the flapper. An intense leading-edge vortex was found on the down-stroke, of sufficient strength to explain the high-lift forces. The vortex is created by dynamic stall, and not by the rotational lift mechanisms that have been postulated for insect flight14–16. The vortex spirals out towards the wingtip with a spanwise velocity comparable to the flapping velocity. The three-dimensional flow is similar to the conical leading-edge vortex found on delta wings, with the spanwise flow stabilizing the vortex.

1,663 citations

••

TL;DR: In this article, a theoretical method for calculating far field noise from an airfoil in an incident turbulent flow is extended to apply to the case of noise produced by turbulent flow past a trailing edge, and some minor points of the theory in reference are clarified.

800 citations

01 Jul 1989

TL;DR: In this article, a prediction method for the self-generated noise of an airfoil blade encountering smooth flow was developed for a large scale-model helicopter rotor, and the predictions compared well with experimental broadband noise measurements.

Abstract: A prediction method is developed for the self-generated noise of an airfoil blade encountering smooth flow. The prediction methods for the individual self-noise mechanisms are semiempirical and are based on previous theoretical studies and data obtained from tests of two- and three-dimensional airfoil blade sections. The self-noise mechanisms are due to specific boundary-layer phenomena, that is, the boundary-layer turbulence passing the trailing edge, separated-boundary-layer and stalled flow over an airfoil, vortex shedding due to laminar boundary layer instabilities, vortex shedding from blunt trailing edges, and the turbulent vortex flow existing near the tip of lifting blades. The predictions are compared successfully with published data from three self-noise studies of different airfoil shapes. An application of the prediction method is reported for a large scale-model helicopter rotor, and the predictions compared well with experimental broadband noise measurements. A computer code of the method is given.

799 citations

••

07 Jun 1982777 citations

••

TL;DR: In this paper, the lift and moment acting upon an airfoil in the two-dimensional case may be calculated directly from simple physical considerations of momentum and moment of momentum after a calculation of the induction effects of a wake vortex.

Abstract: The basic conceptions of the circulation theory of airfoils are reviewed briefly, and the mechanism by which a “wake” of vorticity is produced by an airfoil in non-uniform motion is pointed out It is shown how the lift and moment acting upon an airfoil in the two-dimensional case may be calculated directly from simple physical considerations of momentum and moment of momentum After a calculation of the induction effects of a wake vortex, formulae for the lift and moment are obtained which are applicable to all cases of motion of a two-dimensional thin airfoil in which the wake produced is approximately flat; ie, in which the movement of the airfoil normal to its mean path is small
The general results are applied first to the case of an oscillating airfoil and then to the problem of a plane airfoil entering a “sharp-edged” gust In the latter case the rate of increase of the lift after the entrance of the airfoil into the gust boundary is determined, and it is shown that during the entire process the lift acts at the quarter-chord point of the airfoil
The intention of the authors has been to make the airfoil theory of non-uniform motion more accessible to engineers by showing the physical significance of the various steps of the mathematical deductions, and to present the results of the theory in a form suitable for immediate application to certain flutter and gust problems

720 citations