scispace - formally typeset
Search or ask a question
Topic

Starting vortex

About: Starting vortex is a research topic. Over the lifetime, 4785 publications have been published within this topic receiving 100419 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an experimental investigation was conducted in the UARL Acoustic Research Tunnel to define the noise characteristics associated with the interaction of a stationary tip vortex and a downstream stationary airfoil.
Abstract: An experimental investigation was conducted in the UARL Acoustic Research Tunnel to define the noise characteristics associated with the interaction of a stationary tip vortex and a downstream stationary airfoil. This model test geometry simulated, in its simplest form, the tip vortexblade interaction which occurs on single rotor helicopters during hover. For moderate to high lift test conditions, the vortex-airfoil interaction was found to cause local blade stall with an attendant increase in the blade far-field noise. These results indicated that this interaction may be an important source of helicopter broadband noise during hover. Cross-correlation measurements conducted amongst surface-mounted and far-field microphones demonstrated that the operative noise mechanism was "trailing edge noise" arising from the interaction of stall generated eddies with the airfoil trailing edge. This mechanism would be expected to be responsible for increased noise at stall conditions in other, nonrotary wing, applications.

46 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigate the parallel head-on blade-vortex interaction (BVI) and its noise generation mechanism using a shock tube, with an enlarged test section, was used to generate a starting vortex which interacted with a target airfoil.
Abstract: An experimental and computational study was carried out to investigate the parallel head-on blade-vortex interaction (BVI) and its noise generation mechanism. A shock tube, with an enlarged test section, was used to generate a compressible starting vortex which interacted with a target airfoil. The dual-pulsed holographic interferometry (DPHI) technique and airfoil surface pressure measurements were employed to obtain quantitative flow data during the BVI. A thin-layer Navier-Stokes code (BV12D), with a high-order upwind-biased scheme and a multizonal grid, was also used to simulate numerically the phenomena occurring in the head-on BVI. The detailed structure of a convecting vortex was studied through independent measurements of density and pressure distributions across the vortex center. Results indicate that, in a strong head-on BVI, the opposite pressure peaks are generated on both sides of the leading edge as the vortex approaches. Then, as soon as the vortex passes by the leading edge, the high-pressure peak suddenly moves toward the low-peak-reducing in magnitude as it moves--simultaneously giving rise to the initial sound wave. In both experiment and computation, it is shown that the viscous effect plays a significant role in head-on BVIs.

46 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the symmetry of the circulation of the interconnected vortex loops, which has been confirmed by the experiments, is a natural consequence of the vortex topology.
Abstract: It has previously been shown that, at high Strouhal numbers, oscillating airfoils can produce deflected jets that can create very high lift-coefficients for otherwise symmetric scenarios. These deflected jets form through pairing of the trailing-edge vortices to create asymmetric vortex couples that self-propel at an angle to the freestream, resulting in an asymmetric flow field and non-zero lift. In this paper results are presented that indicate these high-lift deflected jets cannot form for finite wings. Instead of the straight vortex tubes that pair and convect at an angle to the freestream observed for effectively infinite wings, finite wings exhibit vortex tubes that break into two branches near the tip forming double helix structures. One branch connects with the last vortex; one branch connects with the next vortex. This creates a long “daisy chain” of interconnected trailing edge vortices forming a long series of vortex loops. These symmetric flow fields are shown to persist for finite wings even to Strouhal numbers more than twice those required to produce asymmetric wakes on plunging airfoils. Two contributing reasons are discussed for why deflected jets are not observed. First the tip vortex creates three-dimensionality that discourages vortex coupling. Second, the symmetry of the circulation of the interconnected vortex loops, which has been confirmed by the experiments, is a natural consequence of the vortex topology. Therefore, the asymmetry in trailing edge vortex strength previously observed as characteristic of deflected jets cannot be supported for finite wings.

46 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
92% related
Boundary layer
64.9K papers, 1.4M citations
90% related
Vortex
72.3K papers, 1.3M citations
90% related
Turbulence
112.1K papers, 2.7M citations
89% related
Laminar flow
56K papers, 1.2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202336
202278
20217
20207
20196
201815