scispace - formally typeset
Search or ask a question
Topic

Starting vortex

About: Starting vortex is a research topic. Over the lifetime, 4785 publications have been published within this topic receiving 100419 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a flat plate experiment was performed to determine the dynamic evolution of the induced vortex structures using phase-locked stereoscopic Particle Image Velocimetry (PIV) measurements of the jet flow.
Abstract: It is well known that the application of active flow-control strategies has the potential to increase the efficiency of many devices when compared to static actuator concepts. However, many aspects of the flow-control process are not well understood. In the case of pneumatic vortex generators the importance of coherent structures and their interaction with turbulent boundary layers remains an open question. A flat plate experiment was performed to determine the dynamic evolution of the induced vortex structures using phase-locked stereoscopic Particle Image Velocimetry. The qualification of the actuator system was performed by means of the time-resolved Particle Image Velocimetry measurements of the jet flow. The results show that an initial overshooting of the jet velocity dominates the unsteady start-up process, which results in a vortex structure of larger size and impact. This effect differs essentially from the case of steady blowing. In addition, the ability to shift high-momentum fluid into the near-wall region is a result of strong mixing combined with a minimum distance between the vortex core and the model surface.

32 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed categorization of vortex formations in the reduced frequency range of 0.16≤ k ≤ 6.26 corresponding to Strouhal number range 0.05≤St≤1.0.

32 citations

Journal ArticleDOI
TL;DR: In this paper, a spectral analysis of vortex reconnection was performed using a spectral method with periodic boundary conditions and vortex Reynolds number Re=1500, and the results showed that the strong vortex remains nearly straight as the weak vortex wraps around it, inducing an interlaced pattern of positive and negative vorticity spirals within the core of strong vortex.
Abstract: A computational study is reported of the close interaction of nominally anti-parallel vortex tubes with unequal strengths. The computations are performed using a spectral method, with periodic boundary conditions and vortex Reynolds number Re=1500. The vortices are perturbed by a wavelength for which the pair is unstable because of their mutual interaction. The numerical method is tested for the case of equal-strength vortices, which exhibits the classic vortex reconnection phenomenon typifed by bridging between the vortex cores and formation of thin vorticity threads as the bridged sections advect away under their self-induced velocity. Computations for vortices of unequal strengths are reported for cases with small, moderate and large strength differences. The bridges between the vortex structures form loops that twist owing to the unequal vortex strengths. In the thread region, the vortex interaction is controlled by competition between the effects of stretching of the weak vortex as it wraps around the stronger vortex and the core distortion induced on each vortex owing to the straining imposed by the opposing vortex. For cases with large vortex strength difference, the strong vortex remains nearly straight as the weak vortex wraps around it, inducing an interlaced pattern of positive and negative vorticity spirals within the core of the strong vortex. Over long time, the bridge regions form loops that propagate away from the thread region for cases with small strength difference and wrap around the nearly columnar strong vortex for cases with large strength difference.

32 citations

Journal ArticleDOI
TL;DR: In this paper, the dynamics of the Lamb-Oseen vortex when continuously forced by a random excitation were analyzed. And they found that the response is characterised by the generation of vortex rings at the outer periphery of the vortex core.
Abstract: The aim of the present paper is to analyse the dynamics of the Lamb–Oseen vortex when continuously forced by a random excitation. Stochastic forcing is classically used to mimic external perturbations in realistic configurations, such as variations of atmospheric conditions, weak compressibility effects, wing-generated turbulence injected in aircraft wake, or free-stream turbulence in wind tunnel experiments. The linear response of the Lamb–Oseen vortex to stochastic forcing can be decomposed in relation to the azimuthal symmetry of the perturbation given by the azimuthal wavenumber m. In the axisymmetric case m = 0, we find that the response is characterised by the generation of vortex rings at the outer periphery of the vortex core. This result is consistent with recurrent observations of such dynamics in the study of vortex-turbulence interaction. When considering helical perturbations m = 1, the response at large axial wavelengths consists of a global translation of the vortex, a feature very similar to the phenomenon of vortex meandering (or wandering) observed experimentally, corresponding to an erratic displacement of the vortex core. At smaller wavelengths, we find that stochastic forcing can excite specific oscillating modes of the Lamb–Oseen vortex. More precisely, damped critical-layer modes can emerge via a resonance mechanism. For perturbations with higher azimuthal wavenumber m > 2, we find no structure that clearly dominates the response of the vortex.

32 citations

Journal ArticleDOI
TL;DR: In this paper, a study of the interaction of periodic vortex rings with a central columnar vortex was performed, both for the case of identical vortex rings and for the cases of rings of alternating sign.
Abstract: A study has been performed of the interaction of periodic vortex rings with a central columnar vortex, both for the case of identical vortex rings and the case of rings of alternating sign. Numerical calculations, both based on an adaptation of the Lundgren–Ashurst (1989) model for the columnar vortex dynamics and by numerical solution of the axisymmetric Navier–Stokes and Euler equations in the vorticity–velocity formulation using a viscous vorticity collocation method, are used to investigate the response of the columnar vortex to the ring-induced velocity field. In all cases, waves of variable core radius are observed to build up on the columnar vortex core due to the periodic axial straining and compression exerted by the vortex rings. For sufficiently weak vortex rings, the forcing by the rings serves primarily to set an initial value for the axial velocity, after which the columnar vortex waves oscillate approximately as free standing waves. For the case of identical rings, the columnar vortex waves exhibit a slow upstream propagation due to the nonlinear forcing. The cores of the vortex rings can also become unstable due to the straining flow induced by the other vortex rings when the ring spacing is sufficiently small. This instability causes the ring vorticity to spread out into a sheath surrounding the columnar vortex. For the case of rings of alternating sign, the wave in core radius of the columnar vortex becomes progressively narrower with time as rings of opposite sign approach each other. Strong vortex rings cause the waves on the columnar vortex to grow until they form a sharp cusp at the crest, after which an abrupt ejection of vorticity from the columnar vortex is observed. For inviscid flow with identical rings, the ejected vorticity forms a thin spike, which wraps around the rings. The thickness of this spike increases in a viscous flow as the Reynolds number is decreased. Cases have also been observed, for identical rings, where a critical point forms on the columnar vortex core due to the ring-induced flow, at which the propagation velocity of upstream waves is exactly balanced by the axial flow within the vortex core when measured in a frame translating with the vortex rings. The occurrence of this critical point leads to trapping of wave energy downstream of the critical point, which results in large-amplitude wave growth in both the direct and model simulations. In the case of rings of alternating sign, the ejected vorticity from the columnar vortex is entrained and carried off by pairs of rings of opposite sign, which move toward each other and radially outward under their self- and mutually induced velocity fields, respectively.

32 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
92% related
Boundary layer
64.9K papers, 1.4M citations
90% related
Vortex
72.3K papers, 1.3M citations
90% related
Turbulence
112.1K papers, 2.7M citations
89% related
Laminar flow
56K papers, 1.2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202336
202278
20217
20207
20196
201815