scispace - formally typeset
Search or ask a question
Topic

Starting vortex

About: Starting vortex is a research topic. Over the lifetime, 4785 publications have been published within this topic receiving 100419 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the flow characteristics over a NACA4412 airfoil were studied in a low turbulence wind tunnel with moving ground simulation at a Reynolds number of 3.0 x 105 by varying the angle of attack from 0 to 10 deg and ground clearance of the trailing edge from 5% of chord to 100%.
Abstract: The flow characteristics over a NACA4412 airfoil are studied in a low turbulence wind tunnel with moving ground simulation at a Reynolds number of 3.0 x 105 by varying the angle of attack from 0 to 10 deg and ground clearance of the trailing edge from 5% of chord to 100%. The pressure distribution on the airfoil surface was obtained, velocity survey over the surface was performed, wake region was explored, and lift and drag forces were measured. To ensure that the flow is 2-D, particle image velocimetry measurements were performed. A strong suction effect on the lower surface at an angle of attack of 0 deg at the smallest ground clearance caused laminar separation well ahead of the trailing edge. Interestingly, for this airfoil, a loss of upper surface suction was recorded as the airfoil approached the ground for all angles of attack. For angles up to 4 deg, the lift decreased with reducing ground clearance, whereas for higher angles, it increased due to a higher pressure on the lower surface. The drag was higher close to the ground for all angles investigated mainly due to the modification of the lower surface pressure distribution.

137 citations

Journal ArticleDOI
TL;DR: In particular, the mechanisms giving rise to symmetry breaking of the reverse B\'enard-von K\'arm\'an vortex street that characterizes fish-like swimming and forward flapping flight are examined in this article.
Abstract: The vortex streets produced by a flapping foil of span-to-chord aspect ratio of 4:1 are studied in a hydrodynamic tunnel experiment. In particular, the mechanisms giving rise to the symmetry breaking of the reverse B\'enard-von K\'arm\'an vortex street that characterizes fish-like swimming and forward flapping flight are examined. Two-dimensional particle image velocimetry measurements in the mid-plane perpendicular to the span axis of the foil are used to characterize the different flow regimes. The deflection angle of the mean jet flow with respect to the horizontal observed in the average velocity field is used as a measure of the asymmetry of the vortex street. Time series of the vorticity field are used to calculate the advection velocity of the vortices with respect to the free-stream, defined as the phase velocity $U_{phase}$, as well as the circulation $\Gamma$ of each vortex and the spacing $\xi$ between consecutive vortices in the near wake. The observation that the symmetry breaking results from the formation of a dipolar structure from each couple of counter-rotating vortices shed on each flapping period serves as starting point to build a model for the symmetry breaking threshold. A symmetry breaking criterion based on the relation between the phase velocity of the vortex street and an idealized self-advection velocity of two consecutive counter-rotating vortices in the near wake is established. The predicted threshold for symmetry breaking accounts well for the deflected wake regimes observed in the present experiments and may be useful to explain other experimental and numerical observations of similar deflected propulsive vortex streets reported in the literature.

136 citations

Journal ArticleDOI
TL;DR: In this article, the results indicate the presence of dynamic stall at tip speed ratio less than 4, and that helicopter blade aerodynamics can be used in order to explain some aspects of the phenomenon.
Abstract: This paper presents the results of an experimental investigation on a driven Darrieus turbine rotating at different tip speed ratios. For a Reynolds number of 3.8 x 10/sup 4/, the results indicate the presence of dynamic stall at tip speed ratio less than 4, and that helicopter blade aerodynamics can be used in order to explain some aspects of the phenomenon. It was observed that in deep stall conditions, a vortex is formed at the leading edge; this vortex moves over the airfoil surface with 1/3 of the airfoil speed and then is shed at the trailing edge. After its shedding, the vortex can interact with the airfoil surface as the blade passes downstream.

134 citations

Journal ArticleDOI
TL;DR: In this article, a vortex method is used to solve the Navier-Stokes equations in the vorticity/stream-function form, and the convection and diffusion equations are solved sequentially at each time step.

132 citations

Journal ArticleDOI
TL;DR: In this paper, an analysis of the velocity, temperature and pressure distributions in a turbulent vortex with radial and axial flow is made, where the vortex is divided into a core and an annular region with a different uniform axial mass velocity.

132 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
92% related
Boundary layer
64.9K papers, 1.4M citations
90% related
Vortex
72.3K papers, 1.3M citations
90% related
Turbulence
112.1K papers, 2.7M citations
89% related
Laminar flow
56K papers, 1.2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202336
202278
20217
20207
20196
201815