scispace - formally typeset
Search or ask a question
Topic

Starting vortex

About: Starting vortex is a research topic. Over the lifetime, 4785 publications have been published within this topic receiving 100419 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a high-fidelity simulation technique was applied to the analysis of low-Reynolds-number transitional flows over moving and flexible canonical configurations motivated by small natural and man-made flyers.
Abstract: The present paper highlights results derived from the application of a high-fidelity simulation technique to the analysis of low-Reynolds-number transitional flows over moving and flexible canonical configurations motivated by small natural and man-made flyers. This effort addresses three separate fluid dynamic phenomena relevant to small fliers, including: laminar separation and transition over a stationary airfoil, transition effects on the dynamic stall vortex generated by a plunging airfoil, and the effect of flexibility on the flow structure above a membrane airfoil. The specific cases were also selected to permit comparison with available experimental measurements. First, the process of transition on a stationary SD7003 airfoil section over a range of Reynolds numbers and angles of attack is considered. Prior to stall, the flow exhibits a separated shear layer which rolls up into spanwise vortices. These vortices subsequently undergo spanwise instabilities, and ultimately breakdown into fine-scale turbulent structures as the boundary layer reattaches to the airfoil surface. In a timeaveraged sense, the flow displays a closed laminar separation bubble which moves upstream and contracts in size with increasing angle of attack for a fixed Reynolds number. For a fixed angle of attack, as the Reynolds number decreases, the laminar separation bubble grows in vertical extent producing a significant increase in drag. For the lowest Reynolds number considered \((Re_c = 10^4)\), transition does not occur over the airfoil at moderate angles of attack prior to stall. Next, the impact of a prescribed high-frequency small-amplitude plunging motion on the transitional flow over the SD7003 airfoil is investigated. The motioninduced high angle of attack results in unsteady separation in the leading edge and in the formation of dynamic-stalllike vortices which convect downstream close to the airfoil. At the lowest value of Reynolds number \((Re_c = 10^4)\), transition effects are observed to be minor and the dynamic stall vortex system remains fairly coherent. For \(Re_c = 4 \times 10^4\), the dynamic-stall vortex system is laminar at is inception, however shortly afterwards, it experiences an abrupt breakdown associated with the onset of spanwise instability effects. The computed phased-averaged structures for both values of Reynolds number are found to be in good agreement with the experimental data. Finally, the effect of structural compliance on the unsteady flow past a membrane airfoil is investigated. The membrane deformation results in mean camber and large fluctuations which improve aerodynamic performance. Larger values of lift and a delay in stall are achieved relative to a rigid airfoil configuration. For \(Re_c = 4.85 \times 10^4\), it is shown that correct prediction of the transitional process is critical to capturing the proper membrane structural response.

100 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the characteristics of a vortex found at the entry of a 2:1 and 4:1 contraction for viscoelastic fluids and quantified the vortex detachment length as a function of Reynolds and Weissenberg number over the range of 0:2 < N′Re < 200 and 0.10 < NWS < 0.7.
Abstract: The characteristics of a vortex found at the entry of a 2:1 and 4:1 contraction for viscoelastic fluids is investigated. Two distinct flow regimes are identified in the contraction flow field: a vortex growth regime and a divergent flow regime. In the vortex flow regime, rheological forces are found to dominate the flow, with the vortex detachment length being a linear function of the Weissenberg number. In the divergent flow regime, the flow is found to diverge at the center line upstream of the vortex detachment plane, and the vortex size decreases with increasing flow rates. Inertial forces are important in the divergent flow regime. The entry flow characteristics for the 2:1 and 4:1 contraction are quantified in terms of the vortex detachment length as a function of Reynolds and Weissenberg number over the range of 0:2 < N′Re < 200 and 0.10 < NWS < 0.7.

99 citations

01 Jan 2000
TL;DR: In this paper, numerical simulations of wake vortices for IGE show that a vortex may link with its image beneath the ground if the intensity of the ambient turbulence is moderate to high, which gives the appearance of a vortex tube that bends to become vertically oriented and which terminates at the ground.
Abstract: Numerical simulations are carried out with a three-dimensional Large-Eddy Simulation (LES) model to explore the sensitivity of vortex decay and transport in ground effect (IGE). The vortex decay rates are found to be strongly enhanced following maximum descent into ground effect. The nondimensional decay rate is found to be insensitive to the initial values of circulation, height, and vortex separation. The information gained from these simulations is used to construct a simple decay relationship. This relationship compares well with observed data from an IGE case study. Similarly, a relationship for lateral drift due to ground effect is constructed from the LES data. In the second part of this paper, vortex linking with the ground is investigated. Our numerical simulations of wake vortices for IGE show that a vortex may link with its image beneath the ground, if the intensity of the ambient turbulence is moderate to high. This linking with the ground (which is observed in real cases)gives the appearance of a vortex tube that bends to become vertically oriented and which terminates at the ground. From the simulations conducted, the linking time for vortices in the free atmosphere; i.e., a function of ambient turbulence intensity.

99 citations

Journal ArticleDOI
TL;DR: In this article, a turbulent line vortex was measured in zero pressure gradient with axisymmetric jets or wakes added coaxially to the vortex while the total circulation was held constant.
Abstract: Measurements of a turbulent trailing vortex in zero pressure gradient are described. These include mean velocities and all the components of the Reynolds-stress tensor. The measurements were made using linearized hot wires at stations 45, 78 and 109 chordlengths downstream of the wing. Axisymmetric jets or wakes were added coaxially to the vortex while the total circulation was held constant, and their effect studied. It was found, as Poppleton and Mason & Marchman have reported, that increasing the flow force hastens the radial dispersion of vorticity; this is seen to be concurrent with higher turbulence intensities and Reynolds shear stresses. With the flux of excess axial momentum effectively zero, thereby approximating a turbulent line vortex, no discernible downstream change was observed in the velocity field and very little in the turbulence field.A balance of terms in the mean-momentum equations is presented and discussed. It is seen that, in spite of the fact that the radial velocity is numerically much smaller than the axial velocity, terms that contain it, both in the axial- and tangential-momentum equations, cannot be ignored, unless the magnitude of the flow force (divided by the fluid density) is much less than the square of the total circulation.

99 citations

Journal ArticleDOI
TL;DR: In this paper, the stability of an axisymmetric vortex with a single radial discontinuity in potential vorticity is investigated in rotating shallow water, and it is shown analytically that the vortex is always unstable, using the WKBJ method for instabilities with large azimuthal mode number.
Abstract: The stability of an axisymmetric vortex with a single radial discontinuity in potential vorticity is investigated in rotating shallow water. It is shown analytically that the vortex is always unstable, using the WKBJ method for instabilities with large azimuthal mode number. The analysis reveals that the instability is of mixed type, involving the interaction of a Rossby wave on the boundary of the vortex and a gravity wave beyond the sonic radius. Numerically, it is demonstrated that the growth rate of the instability is generally small, except when the potential vorticity in the vortex is the opposite sign to the background value, in which case it is shown that inertial instability is likely to be stronger than the present instability.

99 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
92% related
Boundary layer
64.9K papers, 1.4M citations
90% related
Vortex
72.3K papers, 1.3M citations
90% related
Turbulence
112.1K papers, 2.7M citations
89% related
Laminar flow
56K papers, 1.2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202336
202278
20217
20207
20196
201815